942 resultados para peak shaving
Resumo:
The need for fast response demand side participation (DSP) has never been greater due to increased wind power penetration. White domestic goods suppliers are currently developing a `smart' chip for a range of domestic appliances (e.g. refrigeration units, tumble dryers and storage heaters) to support the home as a DSP unit in future power systems. This paper presents an aggregated population-based model of a single compressor fridge-freezer. Two scenarios (i.e. energy efficiency class and size) for valley filling and peak shaving are examined to quantify and value DSP savings in 2020. The analysis shows potential peak reductions of 40 MW to 55 MW are achievable in the Single wholesale Electricity Market of Ireland (i.e. the test system), and valley demand increases of up to 30 MW. The study also shows the importance of the control strategy start time and the staggering of the devices to obtain the desired filling or shaving effect.
Resumo:
This paper presents a series of operating schedules for Battery Energy Storage Companies (BESC) to provide peak shaving and spinning reserve services in the electricity markets under increasing wind penetration. As individual market participants, BESC can bid in ancillary services markets in an Independent System Operator (ISO) and contribute towards frequency and voltage support in the grid. Recent development in batteries technologies and availability of the day-ahead spot market prices would make BESC economically feasible. Profit maximization of BESC is achieved by determining the optimum capacity of Energy Storage Systems (ESS) required for meeting spinning reserve requirements as well as peak shaving. Historic spot market prices and frequency deviations from Australia Energy Market Operator (AEMO) are used for numerical simulations and the economic benefits of BESC is considered reflecting various aspects in Australia’s National Electricity Markets (NEM).
Resumo:
This paper describes a fridge-freezer smart load model, which responds to external signals from the wholesale electricity market to support grid operations while switching the fridge-freezer on and off to maintain optimum operations for the owner. The key parameters of the model are the appliance dimensions, thermal mass, the fridge and freezer thermal time constants and the compressor power consumption. The model demonstrates that control strategies help to minimise load at times when the grid is under stress from high demand, and shift some load to a lower wholesale price or when there is excess renewable power. Three control strategies are proposed, based on peak shaving and valley filling, price signals and wind availability.
Resumo:
Geological carbon dioxide storage (CCS) has the potential to make a significant contribution to the decarbonisation of the UK. Amid concerns over maintaining security, and hence diversity, of supply, CCS could allow the continued use of coal, oil and gas whilst avoiding the CO2 emissions currently associated with fossil fuel use. This project has explored some of the geological, environmental, technical, economic and social implications of this technology. The UK is well placed to exploit CCS with a large offshore storage capacity, both in disused oil and gas fields and saline aquifers. This capacity should be sufficient to store CO2 from the power sector (at current levels) for a least one century, using well understood and therefore likely to be lower-risk, depleted hydrocarbon fields and contained parts of aquifers. It is very difficult to produce reliable estimates of the (potentially much larger) storage capacity of the less well understood geological reservoirs such as non-confined parts of aquifers. With the majority of its large coal fired power stations due to be retired during the next 15 to 20 years, the UK is at a natural decision point with respect to the future of power generation from coal; the existence of both national reserves and the infrastructure for receiving imported coal makes clean coal technology a realistic option. The notion of CCS as a ‘bridging’ or ‘stop-gap’ technology (i.e. whilst we develop ‘genuinely’ sustainable renewable energy technologies) needs to be examined somewhat critically, especially given the scale of global coal reserves. If CCS plant is built, then it is likely that technological innovation will bring down the costs of CO2 capture, such that it could become increasingly attractive. As with any capitalintensive option, there is a danger of becoming ‘locked-in’ to a CCS system. The costs of CCS in our model for UK power stations in the East Midlands and Yorkshire to reservoirs in the North Sea are between £25 and £60 per tonne of CO2 captured, transported and stored. This is between about 2 and 4 times the current traded price of a tonne of CO2 in the EU Emissions Trading Scheme. In addition to the technical and economic requirements of the CCS technology, it should also be socially and environmentally acceptable. Our research has shown that, given an acceptance of the severity and urgency of addressing climate change, CCS is viewed favourably by members of the public, provided it is adopted within a portfolio of other measures. The most commonly voiced concern from the public is that of leakage and this remains perhaps the greatest uncertainty with CCS. It is not possible to make general statements concerning storage security; assessments must be site specific. The impacts of any potential leakage are also somewhat uncertain but should be balanced against the deleterious effects of increased acidification in the oceans due to uptake of elevated atmospheric CO2 that have already been observed. Provided adequate long term monitoring can be ensured, any leakage of CO2 from a storage site is likely to have minimal localised impacts as long as leaks are rapidly repaired. A regulatory framework for CCS will need to include risk assessment of potential environmental and health and safety impacts, accounting and monitoring and liability for the long term. In summary, although there remain uncertainties to be resolved through research and demonstration projects, our assessment demonstrates that CCS holds great potential for significant cuts in CO2 emissions as we develop long term alternatives to fossil fuel use. CCS can contribute to reducing emissions of CO2 into the atmosphere in the near term (i.e. peak-shaving the future atmospheric concentration of CO2), with the potential to continue to deliver significant CO2 reductions over the long term.
Resumo:
Beside the traditional paradigm of "centralized" power generation, a new concept of "distributed" generation is emerging, in which the same user becomes pro-sumer. During this transition, the Energy Storage Systems (ESS) can provide multiple services and features, which are necessary for a higher quality of the electrical system and for the optimization of non-programmable Renewable Energy Source (RES) power plants. A ESS prototype was designed, developed and integrated into a renewable energy production system in order to create a smart microgrid and consequently manage in an efficient and intelligent way the energy flow as a function of the power demand. The produced energy can be introduced into the grid, supplied to the load directly or stored in batteries. The microgrid is composed by a 7 kW wind turbine (WT) and a 17 kW photovoltaic (PV) plant are part of. The load is given by electrical utilities of a cheese factory. The ESS is composed by the following two subsystems, a Battery Energy Storage System (BESS) and a Power Control System (PCS). With the aim of sizing the ESS, a Remote Grid Analyzer (RGA) was designed, realized and connected to the wind turbine, photovoltaic plant and the switchboard. Afterwards, different electrochemical storage technologies were studied, and taking into account the load requirements present in the cheese factory, the most suitable solution was identified in the high temperatures salt Na-NiCl2 battery technology. The data acquisition from all electrical utilities provided a detailed load analysis, indicating the optimal storage size equal to a 30 kW battery system. Moreover a container was designed and realized to locate the BESS and PCS, meeting all the requirements and safety conditions. Furthermore, a smart control system was implemented in order to handle the different applications of the ESS, such as peak shaving or load levelling.
Resumo:
This paper proposes a novel peak load management scheme for rural areas. The scheme transfers certain customers onto local nonembedded generators during peak load periods to alleviate network under voltage problems. This paper develops and presents this system by way of a case study in Central Queensland, Australia. A methodology is presented for determining the best location for the nonembedded generators as well as the number of generators required to alleviate network problems. A control algorithm to transfer and reconnect customers is developed to ensure that the network voltage profile remains within specification under all plausible load conditions. Finally, simulations are presented to show the performance of the system over a typical maximum daily load profile with large stochastic load variations.
Resumo:
In this chapter we propose clipping with amplitude and phase corrections to reduce the peak-to-average power ratio (PAR) of orthogonal frequency division multiplexed (OFDM) signals in high-speed wireless local area networks defined in IEEE 802.11a physical layer. The proposed techniques can be implemented with a small modification at the transmitter and the receiver remains standard compliant. PAR reduction as much as 4dB can be achieved by selecting a suitable clipping ratio and a correction factor depending on the constellation used. Out of band noise (OBN) is also reduced.
Resumo:
Parallel combinatory orthogonal frequency division multiplexing (PC-OFDM yields lower maximum peak-to-average power ratio (PAR), high bandwidth efficiency and lower bit error rate (BER) on Gaussian channels compared to OFDM systems. However, PC-OFDM does not improve the statistics of PAR significantly. In this chapter, the use of a set of fixed permutations to improve the statistics of the PAR of a PC-OFDM signal is presented. For this technique, interleavers are used to produce K-1 permuted sequences from the same information sequence. The sequence with the lowest PAR, among K sequences is chosen for the transmission. The PAR of a PC-OFDM signal can be further reduced by 3-4 dB by this technique. Mathematical expressions for the complementary cumulative density function (CCDF)of PAR of PC-OFDM signal and interleaved PC-OFDM signal are also presented.
Resumo:
The concept of moving block signallings (MBS) has been adopted in a few mass transit railway systems. When a dense queue of trains begins to move from a complete stop, the trains can re-start in very close succession under MBS. The feeding substations nearby are likely to be overloaded and the service will inevitably be disturbed unless substations of higher power rating are used. By introducing starting time delays among the trains or limiting the trains’ acceleration rate to a certain extent, the peak energy demand can be contained. However, delay is introduced and quality of service is degraded. An expert system approach is presented to provide a supervisory tool for the operators. As the knowledge base is vital for the quality of decisions to be made, the study focuses on its formulation with a balance between delay and peak power demand.
Resumo:
The aim of this work is to develop a Demand-Side-Response (DSR) model, which assists electricity end-users to be engaged in mitigating peak demands on the electricity network in Eastern and Southern Australia. The proposed innovative model will comprise a technical set-up of a programmable internet relay, a router, solid state switches in addition to the suitable software to control electricity demand at user's premises. The software on appropriate multimedia tool (CD Rom) will be curtailing/shifting electric loads to the most appropriate time of the day following the implemented economic model, which is designed to be maximizing financial benefits to electricity consumers. Additionally the model is targeting a national electrical load be spread-out evenly throughout the year in order to satisfy best economic performance for electricity generation, transmission and distribution. The model is applicable in region managed by the Australian Energy Management Operator (AEMO) covering states of Eastern-, Southern-Australia and Tasmania.