899 resultados para partial discharge
Resumo:
This work investigates the feasibly in using a low noise “C” Band block down-converter as a Ultra High Frequency window coupler for the detection of partial discharge activity from free conducting practices and a protrusion on the high voltage conductor in Gas Insulated Switchgear. The investigated window coupler has a better sensitivity than the internal Ultra High Frequency couplers fitted to the system. The investigated window couplers however are sensitive to changes in the frequency content of the discharge signals and appear to be less sensitive to negative discharges signals produced by a protrusion than the positive discharge signals.
Resumo:
Epoxy nanocomposite samples with a good dispersion of alumina nanoparticles in epoxy matrix were prepared and experiments were performed to measure their partial discharge resistant characteristics. Epoxy alumina nanocomposites with 0.1, 1, 5, 10 and 15 wt% nanofillers were prepared in the laboratory and partial discharge (PD) experiments were conducted at a voltage of 10 kV for different durations using IEC (b) type electrodes. The degradation of the sample surfaces were analyzed using SEM techniques, surface profile studies, FTIR spectroscopy as well as PD studies. An attempt was made to understand the interaction dynamics between the nanoparticle and the epoxy chain by measuring the glass transition temperature of the nanocomposites. The partial discharge resistance obtained for the nanocomposites are compared with those of unfilled epoxy and epoxy microcomposites. It was observed that even with 0.1 wt% of nanofiller added to the epoxy matrix, the partial discharge resistance to degradation gets improved considerably. It was also observed that the inter particle distance has a significant effect on the discharge resistance to degradation. The improvement in the degradation resistance is attributed to the interactions between the nanoparticle and the epoxy chain. A possible mechanism for the surface degradation of nanocomposites has been proposed.
Resumo:
An attempt has been made to study the effect of time and test procedure on the behaviour of partial discharge (PD) pulses causing failure of oil-pressboard system under power frequency voltages using circular disc shaped samples and uniform field electrodes. Weibull statistics have been used to handle the large amount of PD data. The PD phenomena has been found to be stress and time dependent. On the basis of stress level, three different regions are identified and in one of the regions, the rate of deterioration of the sample is at a maximum. The work presents some interesting features of Weibull parameters as related to the condition of insulation studied in addition to its usual PD characteristics
Resumo:
Investigation on impulsive signals, originated from Partial Discharge (PD) phenomena, represents an effective tool for preventing electric failures in High Voltage (HV) and Medium Voltage (MV) systems. The determination of both sensors and instruments bandwidths is the key to achieve meaningful measurements, that is to say, obtaining the maximum Signal-To-Noise Ratio (SNR). The optimum bandwidth depends on the characteristics of the system under test, which can be often represented as a transmission line characterized by signal attenuation and dispersion phenomena. It is therefore necessary to develop both models and techniques which can characterize accurately the PD propagation mechanisms in each system and work out the frequency characteristics of the PD pulses at detection point, in order to design proper sensors able to carry out PD measurement on-line with maximum SNR. Analytical models will be devised in order to predict PD propagation in MV apparatuses. Furthermore, simulation tools will be used where complex geometries make analytical models to be unfeasible. In particular, PD propagation in MV cables, transformers and switchgears will be investigated, taking into account both irradiated and conducted signals associated to PD events, in order to design proper sensors.
Resumo:
After the development of power electronics converters, the number of transformers subjected to non-sinusoidal stresses (including DC) has increased in applications such as HVDC links and traction (electric train power cars). The effects of non-sinusoidal voltages on transformer insulation have been investigated by many researchers, but still now, there are some issues that must be understood. Some of those issues are tackled in this Thesis, studying PD phenomena behavior in Kraft paper, pressboard and mineral oil at different voltage conditions like AC, DC, AC+DC, notched AC and square waveforms. From the point of view of converter transformers, it was found that the combined effect of AC and DC voltages produces higher stresses in the pressboard that those that are present under pure DC voltages. The electrical conductivity of the dielectric systems in DC and AC+DC conditions has demonstrated to be a critical parameter, so, its measurement and analysis was also taken into account during all the experiments. Regarding notched voltages, the RMS reduction caused by notches (depending on firing and overlap angles) seems to increase the PDIV. However, the experimental results show that once PD activity has incepted, the notches increase PD repetition rate and magnitude, producing a higher degradation rate of paper. On the other hand, the reduction of mineral oil stocks, their relatively low flash point as well as environmental issues, are factors that are pushing towards the use of esters as transformer insulating fluids. This PhD Thesis also covers the study of two different esters with the scope to validate their use in traction transformers. Mineral oil was used as benchmark. The complete set of dielectric tests performed in the three fluids, show that esters behave better than mineral oil in practically all the investigated conditions, so, their application in traction transformers is possible and encouraged.
Resumo:
On-line partial discharge (PD) measurements have become a common technique for assessing the insulation condition of installed high voltage (HV) insulated cables. When on-line tests are performed in noisy environments, or when more than one source of pulse-shaped signals are present in a cable system, it is difficult to perform accurate diagnoses. In these cases, an adequate selection of the non-conventional measuring technique and the implementation of effective signal processing tools are essential for a correct evaluation of the insulation degradation. Once a specific noise rejection filter is applied, many signals can be identified as potential PD pulses, therefore, a classification tool to discriminate the PD sources involved is required. This paper proposes an efficient method for the classification of PD signals and pulse-type noise interferences measured in power cables with HFCT sensors. By using a signal feature generation algorithm, representative parameters associated to the waveform of each pulse acquired are calculated so that they can be separated in different clusters. The efficiency of the clustering technique proposed is demonstrated through an example with three different PD sources and several pulse-shaped interferences measured simultaneously in a cable system with a high frequency current transformer (HFCT).
Resumo:
An improved understanding of the characteristics of the pre-discharge current pulses in GIS will lead to improved analyses of the results from the UHF partial discharge detection method. This paper presents the characteristics of the first pre-discharge current pulses from a point-to-plain geometry at 1 bar absolute under both polarities of a 1.1/80 us lightning impulse. The analysis has shown that the pre-discharge current wave shape, peak current magnitude and charge is effected by the instantaneous voltage at which the pre- discharge took place as well as the polarity of the active electrode. The measured results show that protrusions on the electrodes have slower wave shape parameters than those reported for free conducting particles.
Resumo:
This paper presents preliminary results of an investigation into the detection of partial discharges on the rise of impulse voltages from a point-to-plane gap in SF6. A parallel RC detection impedance is placed in the earth path of a point. Computer simulations are done to determine the values of R and C that will result in the smallest impulse voltage signal and the largest discharge signal across the detection impedance. These simulations and the experimental work show that the impulse voltage signal can not be sufficiently attenuated during the rise time of the applied voltage impulse using the RC detection impedance alone. An alternative discharge detection method is proposed in which a resonant partial discharge coupler is used. Elimination of noise and the impulse voltage signal can be achieved by shorting the coupler plate to the ground plane in the middle of the disk. However, due to the bandwidth of the measuring equipment and noise from the impulse generator it was not possible to detect discharges on the rising edge of a 1.5s voltage impulse using a coupler shorted in the middle. It was found that for this particular coupler, with no shorting points, and if the rising edge of the voltage impulse is longer than 5us, (10us) PD activity can be detected on the rising edge.
Resumo:
The discharge pulse rates at different magnitude levels are often used as criteria for monitoring the partial-discharge aging of insulation systems. Use of suggested corrections for errors in cumulative probability counting leads to better use of available counters.
Resumo:
Classical models are not successful in describing discharge characteristics of a lead-acid battery when the current density is varied over a wide range. A model is developed in this work to overcome this lacuna by introducing into the standard models two mechanisms that have not been used earlier. Lead sulfate particles nucleate and grow on active materials of electrodes during discharge, resulting in coverage of active area. Increasing rate of discharge builds supersaturation of lead sulfate rapidly, and causes increased extents of nucleation and coverage. Electrodes behave almost like an insulator due to deposition of lead sulfate when active materials are converted to a critical extent, and this can stop discharge process. Influence of this mechanism is also rate dependent. The new model developed is tested against data on polarization behavior, and capacity drawn as a function of current. The model successfully predicts both polarization curves and Peukert behavior. The model is used to predict charge that can be drawn at a current after partial discharge at a different current. Model suggests that altering nucleation behavior can be useful in enhancing capacity available for discharge. (C) 2015 The Electrochemical Society.
Resumo:
This paper presents the results of research aiming to develop partial discharge detection techniques in high voltage equipment, at substation environment. Measurements of high frequency components of leakage current, at equipments' grounding conductor, were performed. This procedure was performed with the equipment energized and without disconnecting it from the system. The partial discharge generated current pulse is picked up by a high frequency CT, and is detected by an oscilloscope. The partial discharge identification was made considering previously obtained laboratory results, where partial discharges were characterized by means of its time domain signatures. This paper focuses measurements in SF6 circuit breakers. Encouraging results were obtained, showing the feasibility of detecting partial discharges in energized equipment in the laboratory and in the field, in a substation environment, using this method.
Resumo:
Power transformers are one of the most important and costly equipment in power generation, transmission and distribution systems. Current average age of transformers in Australia is around 25 years and there is a strong economical tendency to use them up to 50 years or more. As the transformers operate, they get degraded due to different loading and environmental operating stressed conditions. In today‘s competitive energy market with the penetration of distributed energy sources, the transformers are stressed more with minimum required maintenance. The modern asset management program tries to increase the usage life time of power transformers with prognostic techniques using condition indicators. In the case of oil filled transformers, condition monitoring methods based on dissolved gas analysis, polarization studies, partial discharge studies, frequency response analysis studies to check the mechanical integrity, IR heat monitoring and other vibration monitoring techniques are in use. In the current research program, studies have been initiated to identify the degradation of insulating materials by the electrical relaxation technique known as dielectrometry. Aging leads to main degradation products like moisture and other oxidized products due to fluctuating thermal and electrical loading. By applying repetitive low frequency high voltage sine wave perturbations in the range of 100 to 200 V peak across available terminals of power transformer, the conductive and polarization parameters of insulation aging are identified. An in-house novel digital instrument is developed to record the low leakage response of repetitive polarization currents in three terminals configuration. The technique is tested with known three transformers of rating 5 kVA or more. The effects of stressing polarization voltage level, polarizing wave shapes and various terminal configurations provide characteristic aging relaxation information. By using different analyses, sensitive parameters of aging are identified and it is presented in this thesis.