971 resultados para pH, potential hydrogen ion


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Hydroxyl (OH(-)) and calcium (Ca(++)) ion release was evaluated in six materials: G1) Sealer 26, G2) White mineral trioxide aggregate (MTA), G3) Epiphany, G4) Epiphany + 10% calcium hydroxide (CH), G5) Epiphany + 20% CH, and G6) zinc oxide and eugenol. Material and Methods: Specimens were placed in polyethylene tubes and immersed in distilled water. After 3, 6, 12, 24, and 48 h, 7, 14, and 28 days, the water was assessed for pH with a pH meter and for Ca++ release by atomic absorption spectrophotometry. Results: G1, G2, G4, and G5 had the highest pH until 14 days (p < 0.05). G1 presented the highest Ca(++) release until 6 h, and G4 and G5, from 12 h through 14 days. Ca(++) release was greater for G1 and G2 at 28 days. G6 released the least Ca(++). Conclusions: MTA, Sealer 26, Epiphany, and Epiphany + CH release OH-and Ca(++) ions. Epiphany + CH may be an alternative as retrofilling material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MTA is composed of various metal oxides, calcium oxide and bismuth. It has good biological properties and is indicated in cases of endodontic complications. Several commercial formulations are available and further studies are necessary to evaluate these materials. Objective: To evaluate pH and calcium releasing of MTA Fillapex® compared with gray and white MTA. Material and methods: Gray and white MTA (Angelus) and MTA Fillapex® (Angelus) were manipulated and placed into polyethylene tubes and immersed in distilled water. The pH of these solutions was measured at 24 hours, 7 days and 14 days. Simultaneously, at these same aforementioned periods, these materials' calcium releasing was quantified, through atomic absorption spectrophotometry. The results were submitted to ANOVA, with level of significance at 5%. Results: Concerning to pH, the materials present similar behaviors among each other at 24 hours (p > 0.05). At 7 and 14 days, MTA Fillapex® provided significantly lower pH values than the other materials (p < 0.05). Regarding to calcium releasing, at 24 hours and 7 days, MTA Fillapex® provided lower releasing than the other materials (p < 0.05). After 14 days, differences were found between MTA Fillapex® and gray MTA (p < 0.05). Conclusion: All materials showed alkaline pH and calcium releasing, with significantly lower values for MTA Fillapex® sealer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the acceptance of the electrochemical rusting mechanism, oxygen reduction has been considered the main cathodic process, while H+ reduction has been overlooked for the past four decades because oxygen can be readily renewed due to the thin layer Of Solution film formed during atmospheric corrosion. This study shows that measurable hydrogen call be detected at the surface opposite to the corroding side of the specimen during wet-dry cycles, and a clear correlation exists between the quantities of hydrogen permeated through iron sheet and weight loss. Results Suggest the intrinsic importance of H+ reduction that merits further investigation. (c) 2004 Elsevier Ltd. All rights reserved.