929 resultados para object relational data model
Resumo:
Parc marin du Saguenay - Saint-Laurent, Groupe de recherche et d'éducation sur les mammifères marins, GREMM, excursions aux baleines, bélugas, Tadoussac, règlementation, ArcCatalog, ArcMap.
Resumo:
L'objectiu és estudiar les característiques orientades a l'objecte de l'estàndard SQL: 1999 i posar-les a prova amb un producte comercial que les suporti.
Resumo:
This paper is concerned with the computational efficiency of fuzzy clustering algorithms when the data set to be clustered is described by a proximity matrix only (relational data) and the number of clusters must be automatically estimated from such data. A fuzzy variant of an evolutionary algorithm for relational clustering is derived and compared against two systematic (pseudo-exhaustive) approaches that can also be used to automatically estimate the number of fuzzy clusters in relational data. An extensive collection of experiments involving 18 artificial and two real data sets is reported and analyzed. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
People often use tools to search for information. In order to improve the quality of an information search, it is important to understand how internal information, which is stored in user’s mind, and external information, represented by the interface of tools interact with each other. How information is distributed between internal and external representations significantly affects information search performance. However, few studies have examined the relationship between types of interface and types of search task in the context of information search. For a distributed information search task, how data are distributed, represented, and formatted significantly affects the user search performance in terms of response time and accuracy. Guided by UFuRT (User, Function, Representation, Task), a human-centered process, I propose a search model, task taxonomy. The model defines its relationship with other existing information models. The taxonomy clarifies the legitimate operations for each type of search task of relation data. Based on the model and taxonomy, I have also developed prototypes of interface for the search tasks of relational data. These prototypes were used for experiments. The experiments described in this study are of a within-subject design with a sample of 24 participants recruited from the graduate schools located in the Texas Medical Center. Participants performed one-dimensional nominal search tasks over nominal, ordinal, and ratio displays, and searched one-dimensional nominal, ordinal, interval, and ratio tasks over table and graph displays. Participants also performed the same task and display combination for twodimensional searches. Distributed cognition theory has been adopted as a theoretical framework for analyzing and predicting the search performance of relational data. It has been shown that the representation dimensions and data scales, as well as the search task types, are main factors in determining search efficiency and effectiveness. In particular, the more external representations used, the better search task performance, and the results suggest the ideal search performance occurs when the question type and corresponding data scale representation match. The implications of the study lie in contributing to the effective design of search interface for relational data, especially laboratory results, which are often used in healthcare activities.
Resumo:
The HIV Reverse Transcriptase and Protease Sequence Database is an on-line relational database that catalogs evolutionary and drug-related sequence variation in the human immunodeficiency virus (HIV) reverse transcriptase (RT) and protease enzymes, the molecular targets of anti-HIV therapy (http://hivdb.stanford.edu). The database contains a compilation of nearly all published HIV RT and protease sequences, including submissions from International Collaboration databases and sequences published in journal articles. Sequences are linked to data about the source of the sequence sample and the antiretroviral drug treatment history of the individual from whom the isolate was obtained. During the past year 3500 sequences have been added and the data model has been expanded to include drug susceptibility data on sequenced isolates. Database content has also been integrated with didactic text and the output of two sequence analysis programs.
Resumo:
Two-stage data envelopment analysis (DEA) efficiency models identify the efficient frontier of a two-stage production process. In some two-stage processes, the inputs to the first stage are shared by the second stage, known as shared inputs. This paper proposes a new relational linear DEA model for dealing with measuring the efficiency score of two-stage processes with shared inputs under constant returns-to-scale assumption. Two case studies of banking industry and university operations are taken as two examples to illustrate the potential applications of the proposed approach.
Resumo:
Over the past five years, XML has been embraced by both the research and industrial community due to its promising prospects as a new data representation and exchange format on the Internet. The widespread popularity of XML creates an increasing need to store XML data in persistent storage systems and to enable sophisticated XML queries over the data. The currently available approaches to addressing the XML storage and retrieval issue have the limitations of either being not mature enough (e.g. native approaches) or causing inflexibility, a lot of fragmentation and excessive join operations (e.g. non-native approaches such as the relational database approach). ^ In this dissertation, I studied the issue of storing and retrieving XML data using the Semantic Binary Object-Oriented Database System (Sem-ODB) to leverage the advanced Sem-ODB technology with the emerging XML data model. First, a meta-schema based approach was implemented to address the data model mismatch issue that is inherent in the non-native approaches. The meta-schema based approach captures the meta-data of both Document Type Definitions (DTDs) and Sem-ODB Semantic Schemas, thus enables a dynamic and flexible mapping scheme. Second, a formal framework was presented to ensure precise and concise mappings. In this framework, both schemas and the conversions between them are formally defined and described. Third, after major features of an XML query language, XQuery, were analyzed, a high-level XQuery to Semantic SQL (Sem-SQL) query translation scheme was described. This translation scheme takes advantage of the navigation-oriented query paradigm of the Sem-SQL, thus avoids the excessive join problem of relational approaches. Finally, the modeling capability of the Semantic Binary Object-Oriented Data Model (Sem-ODM) was explored from the perspective of conceptually modeling an XML Schema using a Semantic Schema. ^ It was revealed that the advanced features of the Sem-ODB, such as multi-valued attributes, surrogates, the navigation-oriented query paradigm, among others, are indeed beneficial in coping with the XML storage and retrieval issue using a non-XML approach. Furthermore, extensions to the Sem-ODB to make it work more effectively with XML data were also proposed. ^
Resumo:
Relation-inferred self-efficacy (RISE), a relatively new concept, is defined as a target individual’s beliefs about how an observer, often a relationship partner, perceives the target’s ability to perform certain actions successfully. Along with self-efficacy (i.e., one’s beliefs about his or her own ability) and other-efficacy (i.e., one’s beliefs about his or her partner’s ability), RISE makes up a three part system of interrelated efficacy beliefs known as the relational efficacy model (Lent & Lopez, 2002). Previous research has shown this model to be helpful in understanding how relational dyads, including coach-athlete, advisor-advisee, and romantic partners, contribute to the development of self-efficacy beliefs. The clinical supervision dyad (i.e., supervisor-supervisee), is another context in which relational efficacy beliefs may play an important role. This study investigated the relationship between counseling self-efficacy, RISE, and other-efficacy within the context of clinical supervision. Specifically, it examined whether supervisee perceptions about how their supervisor sees their counseling ability (RISE) related to how supervisees see their own counseling ability (counseling self-efficacy), and what moderates this relationship. The study also sought to discover the degree to which RISE mediated the relationship between supervisor working alliance and counseling self-efficacy. Data were collected from 240 graduate students who were currently enrolled in counseling related fields, working with at least one client, and receiving regular supervision. Results demonstrated that years of experience and RISE predicted counseling self-efficacy and that the relationship between RISE and counseling self-efficacy was, as expected, moderated by other-efficacy. Contrary to expectations, however, counseling experience and level of client difficulty did not moderate the relationship between RISE and counseling self-efficacy. These findings suggest that the relationship between RISE and counseling self-efficacy was stronger when supervisees saw their supervisors as capable therapists. Furthermore, RISE was found to fully mediate the relationship between supervisor working alliance and counseling self-efficacy. Future research directions and implications for training and supervision are discussed.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Companies are increasingly more and more dependent on distributed web-based software systems to support their businesses. This increases the need to maintain and extend software systems with up-to-date new features. Thus, the development process to introduce new features usually needs to be swift and agile, and the supporting software evolution process needs to be safe, fast, and efficient. However, this is usually a difficult and challenging task for a developer due to the lack of support offered by programming environments, frameworks, and database management systems. Changes needed at the code level, database model, and the actual data contained in the database must be planned and developed together and executed in a synchronized way. Even under a careful development discipline, the impact of changing an application data model is hard to predict. The lifetime of an application comprises changes and updates designed and tested using data, which is usually far from the real, production, data. So, coding DDL and DML SQL scripts to update database schema and data, is the usual (and hard) approach taken by developers. Such manual approach is error prone and disconnected from the real data in production, because developers may not know the exact impact of their changes. This work aims to improve the maintenance process in the context of Agile Platform by Outsystems. Our goal is to design and implement new data-model evolution features that ensure a safe support for change and a sound migration process. Our solution includes impact analysis mechanisms targeting the data model and the data itself. This provides, to developers, a safe, simple, and guided evolution process.
Resumo:
Our purpose is to provide a set-theoretical frame to clustering fuzzy relational data basically based on cardinality of the fuzzy subsets that represent objects and their complementaries, without applying any crisp property. From this perspective we define a family of fuzzy similarity indexes which includes a set of fuzzy indexes introduced by Tolias et al, and we analyze under which conditions it is defined a fuzzy proximity relation. Following an original idea due to S. Miyamoto we evaluate the similarity between objects and features by means the same mathematical procedure. Joining these concepts and methods we establish an algorithm to clustering fuzzy relational data. Finally, we present an example to make clear all the process
Resumo:
Memoria de TFC en el que se analiza el estándar SQL:1999 y se compara con PostgreeSQL y Oracle.
Resumo:
Tässä insinöörityössä esitellään Stadian verkkoviestinnän VIDEOS-hankkeeseen liittyvän web-pohjaisen videoeditorin kehitys ja käytetyt teknologiat. Fooga-nimiseksi nimetty videoeditorin käyttämät tekniikat ovat Ruby, Ruby on Rails, FFmpeg, Mencoder, ImageMagick ja FLVTool2. Ruby on olio-pohjainen skriptikieli, Ruby on Rails on websovelluskehys ja muut tekniikat ovat komentorivipohjaisia työkaluja, jotka tarjoavat tärkeimmät toiminnallisuudet Foogalle. Tavoitteina oli tämän työn yhteydessä ohjelmoida Foogaan perustoiminnallisuudet, jotka mahdollistavat minimaaliset käyttömahdollisuudet kevääseen 2007 mennessä. Kehitystyö jatkuu vuoteen 2009 asti tarjoamalla samalla mahdollisuuden usealle insinöörityölle tekniikan ja liikenteen koulutusohjelmasta. Tämän lisäksi tässä insinöörityössä perehdytään Object-Relational Mapping-tekniikan perusteisiiin ja verrataan Ruby on Railsin ja Javan ORM-ominaisuuksia. Ruby on Railsin osalta esitellään ActiveRecord-luokka ja Javan osalta Hibernate, jonka johdantona on DAO/DTO-sunnittelumalli.
Resumo:
Data management consists of collecting, storing, and processing the data into the format which provides value-adding information for decision-making process. The development of data management has enabled of designing increasingly effective database management systems to support business needs. Therefore as well as advanced systems are designed for reporting purposes, also operational systems allow reporting and data analyzing. The used research method in the theory part is qualitative research and the research type in the empirical part is case study. Objective of this paper is to examine database management system requirements from reporting managements and data managements perspectives. In the theory part these requirements are identified and the appropriateness of the relational data model is evaluated. In addition key performance indicators applied to the operational monitoring of production are studied. The study has revealed that the appropriate operational key performance indicators of production takes into account time, quality, flexibility and cost aspects. Especially manufacturing efficiency has been highlighted. In this paper, reporting management is defined as a continuous monitoring of given performance measures. According to the literature review, the data management tool should cover performance, usability, reliability, scalability, and data privacy aspects in order to fulfill reporting managements demands. A framework is created for the system development phase based on requirements, and is used in the empirical part of the thesis where such a system is designed and created for reporting management purposes for a company which operates in the manufacturing industry. Relational data modeling and database architectures are utilized when the system is built for relational database platform.