940 resultados para noise immunity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

"UIUCDCS-R-73-595"

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper the static noise margin for SET (single electron transistor) logic is defined and compact models for the noise margin are developed by making use of the MIB (Mahapatra-Ionescu-Banerjee) model. The variation of the noise margin with temperature and background charge is also studied. A chain of SET inverters is simulated to validate the definition of various logic levels (like VIH, VOH, etc.) and noise margin. Finally the noise immunity of SET logic is compared with current CMOS logic.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, an input receiver with a hysteresis characteristic that can work at voltage levels between 0.9 V and 5 V is proposed. The input receiver can be used as a wide voltage range Schmitt trigger also. At the same time, reliable circuit operation is ensured. According to the research findings, this is the first time a wide voltage range Schmitt trigger is being reported. The proposed circuit is compared with previously reported input receivers, and it is shown that the circuit has better noise immunity. The proposed input receiver ends the need for a separate Schmitt trigger and input buffer. The frequency of operation is also higher than that of the previously reported receiver. The circuit is simulated using HSPICE at 035-mu m standard thin oxide technology. Monte Carlo analysis is conducted at different process conditions, showing that the proposed circuit works well for different process conditions at different voltage levels of operation. A noise impulse of (V-CC/2) magnitude is added to the input voltage to show that the receiver receives the correct logic level even in the presence of noise. Here, V-CC is the fixed voltage supply of 3.3 V.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Temporal dynamics and speaker characteristics are two important features of speech that distinguish speech from noise. In this paper, we propose a method to maximally extract these two features of speech for speech enhancement. We demonstrate that this can reduce the requirement for prior information about the noise, which can be difficult to estimate for fast-varying noise. Given noisy speech, the new approach estimates clean speech by recognizing long segments of the clean speech as whole units. In the recognition, clean speech sentences, taken from a speech corpus, are used as examples. Matching segments are identified between the noisy sentence and the corpus sentences. The estimate is formed by using the longest matching segments found in the corpus sentences. Longer speech segments as whole units contain more distinct dynamics and richer speaker characteristics, and can be identified more accurately from noise than shorter speech segments. Therefore, estimation based on the longest recognized segments increases the noise immunity and hence the estimation accuracy. The new approach consists of a statistical model to represent up to sentence-long temporal dynamics in the corpus speech, and an algorithm to identify the longest matching segments between the noisy sentence and the corpus sentences. The algorithm is made more robust to noise uncertainty by introducing missing-feature based noise compensation into the corpus sentences. Experiments have been conducted on the TIMIT database for speech enhancement from various types of nonstationary noise including song, music, and crosstalk speech. The new approach has shown improved performance over conventional enhancement algorithms in both objective and subjective evaluations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart, by the sympathetic and parasympathetic branches of the autonomic nervous system. Heart rate variability analysis is an important tool to observe the heart's ability to respond to normal regulatory impulses that affect its rhythm. A computer-based intelligent system for analysis of cardiac states is very useful in diagnostics and disease management. Like many bio-signals, HRV signals are nonlinear in nature. Higher order spectral analysis (HOS) is known to be a good tool for the analysis of nonlinear systems and provides good noise immunity. In this work, we studied the HOS of the HRV signals of normal heartbeat and seven classes of arrhythmia. We present some general characteristics for each of these classes of HRV signals in the bispectrum and bicoherence plots. We also extracted features from the HOS and performed an analysis of variance (ANOVA) test. The results are very promising for cardiac arrhythmia classification with a number of features yielding a p-value < 0.02 in the ANOVA test.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The theory of nonlinear dyamic systems provides some new methods to handle complex systems. Chaos theory offers new concepts, algorithms and methods for processing, enhancing and analyzing the measured signals. In recent years, researchers are applying the concepts from this theory to bio-signal analysis. In this work, the complex dynamics of the bio-signals such as electrocardiogram (ECG) and electroencephalogram (EEG) are analyzed using the tools of nonlinear systems theory. In the modern industrialized countries every year several hundred thousands of people die due to sudden cardiac death. The Electrocardiogram (ECG) is an important biosignal representing the sum total of millions of cardiac cell depolarization potentials. It contains important insight into the state of health and nature of the disease afflicting the heart. Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart by the sympathetic and parasympathetic branches of the autonomic nervous system. Heart rate variability analysis is an important tool to observe the heart's ability to respond to normal regulatory impulses that affect its rhythm. A computerbased intelligent system for analysis of cardiac states is very useful in diagnostics and disease management. Like many bio-signals, HRV signals are non-linear in nature. Higher order spectral analysis (HOS) is known to be a good tool for the analysis of non-linear systems and provides good noise immunity. In this work, we studied the HOS of the HRV signals of normal heartbeat and four classes of arrhythmia. This thesis presents some general characteristics for each of these classes of HRV signals in the bispectrum and bicoherence plots. Several features were extracted from the HOS and subjected an Analysis of Variance (ANOVA) test. The results are very promising for cardiac arrhythmia classification with a number of features yielding a p-value < 0.02 in the ANOVA test. An automated intelligent system for the identification of cardiac health is very useful in healthcare technology. In this work, seven features were extracted from the heart rate signals using HOS and fed to a support vector machine (SVM) for classification. The performance evaluation protocol in this thesis uses 330 subjects consisting of five different kinds of cardiac disease conditions. The classifier achieved a sensitivity of 90% and a specificity of 89%. This system is ready to run on larger data sets. In EEG analysis, the search for hidden information for identification of seizures has a long history. Epilepsy is a pathological condition characterized by spontaneous and unforeseeable occurrence of seizures, during which the perception or behavior of patients is disturbed. An automatic early detection of the seizure onsets would help the patients and observers to take appropriate precautions. Various methods have been proposed to predict the onset of seizures based on EEG recordings. The use of nonlinear features motivated by the higher order spectra (HOS) has been reported to be a promising approach to differentiate between normal, background (pre-ictal) and epileptic EEG signals. In this work, these features are used to train both a Gaussian mixture model (GMM) classifier and a Support Vector Machine (SVM) classifier. Results show that the classifiers were able to achieve 93.11% and 92.67% classification accuracy, respectively, with selected HOS based features. About 2 hours of EEG recordings from 10 patients were used in this study. This thesis introduces unique bispectrum and bicoherence plots for various cardiac conditions and for normal, background and epileptic EEG signals. These plots reveal distinct patterns. The patterns are useful for visual interpretation by those without a deep understanding of spectral analysis such as medical practitioners. It includes original contributions in extracting features from HRV and EEG signals using HOS and entropy, in analyzing the statistical properties of such features on real data and in automated classification using these features with GMM and SVM classifiers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new algorithm for extracting features from images for object recognition is described. The algorithm uses higher order spectra to provide desirable invariance properties, to provide noise immunity, and to incorporate nonlinearity into the feature extraction procedure thereby allowing the use of simple classifiers. An image can be reduced to a set of 1D functions via the Radon transform, or alternatively, the Fourier transform of each 1D projection can be obtained from a radial slice of the 2D Fourier transform of the image according to the Fourier slice theorem. A triple product of Fourier coefficients, referred to as the deterministic bispectrum, is computed for each 1D function and is integrated along radial lines in bifrequency space. Phases of the integrated bispectra are shown to be translation- and scale-invariant. Rotation invariance is achieved by a regrouping of these invariants at a constant radius followed by a second stage of invariant extraction. Rotation invariance is thus converted to translation invariance in the second step. Results using synthetic and actual images show that isolated, compact clusters are formed in feature space. These clusters are linearly separable, indicating that the nonlinearity required in the mapping from the input space to the classification space is incorporated well into the feature extraction stage. The use of higher order spectra results in good noise immunity, as verified with synthetic and real images. Classification of images using the higher order spectra-based algorithm compares favorably to classification using the method of moment invariants

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes the design and implementation of a wireless neural telemetry system that enables new experimental paradigms, such as neural recordings during rodent navigation in large outdoor environments. RoSco, short for Rodent Scope, is a small lightweight user-configurable module suitable for digital wireless recording from freely behaving small animals. Due to the digital transmission technology, RoSco has advantages over most other wireless modules of noise immunity and online user-configurable settings. RoSco digitally transmits entire neural waveforms for 14 of 16 channels at 20 kHz with 8-bit encoding which are streamed to the PC as standard USB audio packets. Up to 31 RoSco wireless modules can coexist in the same environment on non-overlapping independent channels. The design has spatial diversity reception via two antennas, which makes wireless communication resilient to fading and obstacles. In comparison with most existing wireless systems, this system has online user-selectable independent gain control of each channel in 8 factors from 500 to 32,000 times, two selectable ground references from a subset of channels, selectable channel grounding to disable noisy electrodes, and selectable bandwidth suitable for action potentials (300 Hz–3 kHz) and low frequency field potentials (4 Hz–3 kHz). Indoor and outdoor recordings taken from freely behaving rodents are shown to be comparable to a commercial wired system in sorting for neural populations. The module has low input referred noise, battery life of 1.5 hours and transmission losses of 0.1% up to a range of 10 m.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart by the sympathetic and parasympathetic branches of the autonomic nervous system. HRV analysis is an important tool to observe the heart’s ability to respond to normal regulatory impulses that affect its rhythm. Like many bio-signals, HRV signals are non-linear in nature. Higher order spectral analysis (HOS) is known to be a good tool for the analysis of non-linear systems and provides good noise immunity. A computer-based arrhythmia detection system of cardiac states is very useful in diagnostics and disease management. In this work, we studied the identification of the HRV signals using features derived from HOS. These features were fed to the support vector machine (SVM) for classification. Our proposed system can classify the normal and other four classes of arrhythmia with an average accuracy of more than 85%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new 2-D quality-guided phase-unwrapping algorithm, based on the placement of the branch cuts, is presented. Its framework consists of branch cut placing guided by an original quality map and reliability ordering performed on a final quality map. To improve the noise immunity of the new algorithm, a new quality map, which is used as the original quality map to guide the placement of the branch cuts, is proposed. After a complete description of the algorithm and the quality map, several wrapped images are used to examine the effectiveness of the algorithm. Computer simulation and experimental results make it clear that the proposed algorithm works effectively even when a wrapped phase map contains error sources, such as phase discontinuities, noise, and undersampling. (c) 2005 Society of Photo-Optical Instrumentation Engineers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new 2-D quality-guided phase-unwrapping algorithm, based on the placement of the branch cuts, is presented. Its framework consists of branch cut placing guided by an original quality map and reliability ordering performed on a final quality map. To improve the noise immunity of the new algorithm, a new quality map, which is used as the original quality map to guide the placement of the branch cuts, is proposed. After a complete description of the algorithm and the quality map, several wrapped images are used to examine the effectiveness of the algorithm. Computer simulation and experimental results make it clear that the proposed algorithm works effectively even when a wrapped phase map contains error sources, such as phase discontinuities, noise, and undersampling. (c) 2005 Society of Photo-Optical Instrumentation Engineers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To extend the cross-hole seismic 2D data to outside 3D seismic data, reconstructing the low frequency data to high frequency data is necessary. Blind deconvolution method is a key technology. In this paper, an implementation of Blind deconvolution is introduced. And optimized precondition conjugate gradient method is used to improve the stability of the algorithm and reduce the computation. Then high-frequency retrieved Seismic data and the cross-hole seismic data is combined for constraint inversion. Real data processing proved the method is effective. To solve the problem that the seismic data resolution can’t meet the request of reservoir prediction in the river face thin-layers in Chinese eastern oil fields, a high frequency data reconstruction method is proposed. The extrema of the seismic data are used to get the modulation function which operated with the original seismic data to get the high frequency part of the reconstruction data to rebuild the wide band data. This method greatly saves the computation, and easy to adjust the parameters. In the output profile, the original features of the seismic events are kept, the common feint that breaking the events and adding new zeros to produce alias is avoided. And the interbeded details are enhanced compared to the original profiles. The effective band of seismic data is expended and the method is approved by the processing of the field data. Aim to the problem in the exploration and development of Chinese eastern oil field that the high frequency log data and the relative low frequency seismic data can’t be merged, a workflow of log data extrapolation constrained by time-phase model based on local wave decomposition is raised. The seismic instantaneous phase is resolved by local wave decomposition to build time-phase model, the layers beside the well is matched to build the relation of log and seismic data, multiple log info is extrapolated constrained by seismic equiphase map, high precision attributes inverse sections are produced. In the course of resolve the instantaneous phase, a new method of local wave decomposition --Hilbert transform mean mode decomposition(HMMD) is raised to improve the computation speed and noise immunity. The method is applied in the high resolution reservoir prediction in Mao2 survey of Daqing oil field, Multiple attributes profiles of wave impedance, gamma-ray, electrical resistivity, sand membership degree are produced, of which the resolution is high and the horizontal continuous is good. It’s proved to be a effective method for reservoir prediction and estimation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Both the (5,3) counter and (2,2,3) counter multiplication techniques are investigated for the efficiency of their operation speed and the viability of the architectures when implemented in a fast bipolar ECL technology. The implementation of the counters in series-gated ECL and threshold logic are contrasted for speed, noise immunity and complexity, and are critically compared with the fastest practical design of a full-adder. A novel circuit technique to overcome the problems of needing high fan-in input weights in threshold circuits through the use of negative weighted inputs is presented. The authors conclude that a (2,2,3) counter based array multiplier implemented in series-gated ECL should enable a significant increase in speed over conventional full adder based array multipliers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes the study, computer simulation and feasibility of implementation of vector control speed of an induction motor using for this purpose the Extended Kalman Filter as an estimator of rotor flux. The motivation for such work is the use of a control system that requires no sensors on the machine shaft, thus providing a considerable cost reduction of drives and their maintenance, increased reliability, robustness and noise immunity as compared to control systems with conventional sensors

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Content Addressable Memory (CAM) is a special type of Complementary Metal-Oxide-Semiconductor (CMOS) storage element that allows for a parallel search operation on a memory stack in addition to the read and write operations yielded by a conventional SRAM storage array. In practice, it is often desirable to be able to store a “don’t care” state for faster searching operation. However, commercially available CAM chips are forced to accomplish this functionality by having to include two binary memory storage elements per CAM cell,which is a waste of precious area and power resources. This research presents a novel CAM circuit that achieves the “don’t care” functionality with a single ternary memory storage element. Using the recent development of multiple-voltage-threshold (MVT) CMOS transistors, the functionality of the proposed circuit is validated and characteristics for performance, power consumption, noise immunity, and silicon area are presented. This workpresents the following contributions to the field of CAM and ternary-valued logic:• We present a novel Simple Ternary Inverter (STI) transistor geometry scheme for achieving ternary-valued functionality in existing SOI-CMOS 0.18µm processes.• We present a novel Ternary Content Addressable Memory based on Three-Valued Logic (3CAM) as a single-storage-element CAM cell with “don’t care” functionality.• We explore the application of macro partitioning schemes to our proposed 3CAM array to observe the benefits and tradeoffs of architecture design in the context of power, delay, and area.