Pattern recognition using invariants defined from higher order spectra : 2-D image inputs


Autoria(s): Chandran, Vinod; Carswell, Brett; Boashash, Boualem; Elgar, Steve
Data(s)

1997

Resumo

A new algorithm for extracting features from images for object recognition is described. The algorithm uses higher order spectra to provide desirable invariance properties, to provide noise immunity, and to incorporate nonlinearity into the feature extraction procedure thereby allowing the use of simple classifiers. An image can be reduced to a set of 1D functions via the Radon transform, or alternatively, the Fourier transform of each 1D projection can be obtained from a radial slice of the 2D Fourier transform of the image according to the Fourier slice theorem. A triple product of Fourier coefficients, referred to as the deterministic bispectrum, is computed for each 1D function and is integrated along radial lines in bifrequency space. Phases of the integrated bispectra are shown to be translation- and scale-invariant. Rotation invariance is achieved by a regrouping of these invariants at a constant radius followed by a second stage of invariant extraction. Rotation invariance is thus converted to translation invariance in the second step. Results using synthetic and actual images show that isolated, compact clusters are formed in feature space. These clusters are linearly separable, indicating that the nonlinearity required in the mapping from the input space to the classification space is incorporated well into the feature extraction stage. The use of higher order spectra results in good noise immunity, as verified with synthetic and real images. Classification of images using the higher order spectra-based algorithm compares favorably to classification using the method of moment invariants

Formato

application/pdf

application/pdf

Identificador

http://eprints.qut.edu.au/45572/

Publicador

Institute of Electrical and Electronics Engineers

Relação

http://eprints.qut.edu.au/45572/1/IEEE-IP1.pdf

http://eprints.qut.edu.au/45572/2/PatternRecognitionHOS2D1997.pdf

DOI:10.1109/83.568927

Chandran, Vinod, Carswell, Brett, Boashash, Boualem, & Elgar, Steve (1997) Pattern recognition using invariants defined from higher order spectra : 2-D image inputs. IEEE Transactions on Image Processing, 6(5), pp. 703-712.

Direitos

Copyright 1997 Institute of Electrical and Electronics Engineers

Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Fonte

Faculty of Built Environment and Engineering; School of Engineering Systems

Palavras-Chave #Fourier transforms #Radon transforms #feature extraction #image classification #object recognition #spectral analysis #1D projection #2-D image inputs #2D Fourier transform #Fourier slice theorem #Fourier transform #Radon transform #algorithm #bifrequency space #classification #deterministic bispectrum #feature extraction procedure #higher order spectra #invariance properties #invariants #noise immunity #nonlinearity #pattern recognition #rotation invariance #translation invariance #triple product
Tipo

Journal Article