978 resultados para natural computing


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Image segmentation is one of the image processing problems that deserves special attention from the scientific community. This work studies unsupervised methods to clustering and pattern recognition applicable to medical image segmentation. Natural Computing based methods have shown very attractive in such tasks and are studied here as a way to verify it's applicability in medical image segmentation. This work treats to implement the following methods: GKA (Genetic K-means Algorithm), GFCMA (Genetic FCM Algorithm), PSOKA (PSO and K-means based Clustering Algorithm) and PSOFCM (PSO and FCM based Clustering Algorithm). Besides, as a way to evaluate the results given by the algorithms, clustering validity indexes are used as quantitative measure. Visual and qualitative evaluations are realized also, mainly using data given by the BrainWeb brain simulator as ground truth

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We are indebted with Marnix Medema, Paul Straight and Sean Rovito, for useful discussions and critical reading of the manuscript, as well as with Alicia Chagolla and Yolanda Rodriguez of the MS Service of Unidad Irapuato, Cinvestav, and Araceli Fernandez for technical support in high-performance computing. This work was funded by Conacyt Mexico (grants No. 179290 and 177568) and FINNOVA Mexico (grant No. 214716) to FBG. PCM was funded by Conacyt scholarship (No. 28830) and a Cinvestav posdoctoral fellowship. JF and JFK acknowledge funding from the College of Physical Sciences, University of Aberdeen, UK.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Acknowledgements The authors thank the children, their parents and school staff, who participated in this research, and who so willingly gave us their time, help and support. They also thank Steven Knox and Alan Clelland for their work on programming the mobile phone application. Additional thanks to DynaVox Inc. for supplying the Vmax communication devices to run our system on and Sensory Software Ltd for supplying us with their AAC software. This research was supported by the Research Council UKs Digittal Economy Programme and EPSRC (Grant numbers EP/F067151/1, EP/F066880/1, EP/E011764/1, EP/H022376/1, and EP/H022570 /1).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Acknowledgements The work of Klaus Nordhausen was supported by the Academy of Finland (grant 268703). Oleksii Pokotylo is supported by the Cologne Graduate School of Management, Economics and Social Sciences. The work of Daniel Vogel was supported by the DFG collaborate research grant SFB 823

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This work was supported by the Spanish Ministry for Economy and Competitiveness (grant TIN2014-56633-C3-1-R) and by the European Regional Development Fund (ERDF/FEDER) and the Galician Ministry of Education (grants GRC2014/030 and CN2012/151). Alejandro Ramos-Soto is supported by the Spanish Ministry for Economy and Competitiveness (FPI Fellowship Program) under grant BES-2012-051878.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Acknowledgments This work was supported by grants from the European Commission within its FP7 Programme, under the thematic area KBBE.2012.3.2-01 with Grant Number Nos. 311932 “SeaBioTech”, 311848 “BlueGenics”, and 312184 PharmaSea.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La computación evolutiva y muy especialmente los algoritmos genéticos son cada vez más empleados en las organizaciones para resolver sus problemas de gestión y toma de decisiones (Apoteker & Barthelemy, 2000). La literatura al respecto es creciente y algunos estados del arte han sido publicados. A pesar de esto, no hay un trabajo explícito que evalúe de forma sistemática el uso de los algoritmos genéticos en problemas específicos de los negocios internacionales (ejemplos de ello son la logística internacional, el comercio internacional, el mercadeo internacional, las finanzas internacionales o estrategia internacional). El propósito de este trabajo de grado es, por lo tanto, realizar un estado situacional de las aplicaciones de los algoritmos genéticos en los negocios internacionales.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper is concerned with the computational efficiency of fuzzy clustering algorithms when the data set to be clustered is described by a proximity matrix only (relational data) and the number of clusters must be automatically estimated from such data. A fuzzy variant of an evolutionary algorithm for relational clustering is derived and compared against two systematic (pseudo-exhaustive) approaches that can also be used to automatically estimate the number of fuzzy clusters in relational data. An extensive collection of experiments involving 18 artificial and two real data sets is reported and analyzed. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este artigo apresenta uma breve revisão de alguns dos mais recentes métodos bioinspirados baseados no comportamento de populações para o desenvolvimento de técnicas de solução de problemas. As metaheurísticas tratadas aqui correspondem às estratégias de otimização por colônia de formigas, otimização por enxame de partículas, algoritmo shuffled frog-leaping, coleta de alimentos por bactérias e colônia de abelhas. Os princípios biológicos que motivaram o desenvolvimento de cada uma dessas estratégias, assim como seus respectivos algoritmos computacionais, são introduzidos. Duas aplicações diferentes foram conduzidas para exemplificar o desempenho de tais algoritmos. A finalidade é enfatizar perspectivas de aplicação destas abordagens em diferentes problemas da área de engenharia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Em muitos problemas de otimização há dificuldades em alcançar um resultado ótimo ou mesmo um resultado próximo ao valor ótimo em um tempo viável, principalmente quando se trabalha em grande escala. Por isso muitos desses problemas são abordados por heurísticas ou metaheurísticas que executam buscas por melhores soluções dentro do espaço de busca definido. Dentro da computação natural estão os Algoritmos Culturais e os Algoritmos Genéticos, que são considerados metaheurísticas evolutivas que se complementam devido ao mecanismo dual de herança cultura/genética. A proposta do presente trabalho é estudar e utilizar tais mecanismos acrescentando tanto heurísticas de busca local como multipopulações aplicados em problemas de otimização combinatória (caixeiro viajante e mochila), funções multimodais e em problemas restritos. Serão executados alguns experimentos para efetuar uma avaliação em relação ao desempenho desses mecanismos híbridos e multipopulacionais com outros mecanismos dispostos na literatura de acordo com cada problema de otimização aqui abordado.