919 resultados para multiple supply chain network
Resumo:
In search for competitive advantage, designing and managing supply chain networks have become a necessary competence for organizations. The target of this thesis is to answer a question, how to design a multiple supply chain network. The purpose is to study, what kind of different supply chain designs exist and, how to choose appropriate supply chain designs for a company. In the thesis, the focus is on the supply chain alignment to customers, more specifically to customer buying behavior. The research method was a case study. A framework for measuring customer buying behavior was developed based on the literature and it was used in the study of customer buying behavior in the case environment. In the case company structured interviews and data records were used as sources of evidence. Persons working in the customer-interface were interviewed face-to-face and through an e-mail questionnaire. When analyzing the data, a Quality function deployment matrix was used as one analysis method. As a result of the thesis, supply chain network of the case company is proposed to be divided into three separate supply chains, which focus on different areas and they could be called lean, agile and continuous replenishment supply chains. In conclusion, in the supply chain alignment to customer buying behavior several aspects have to be studied from different perspectives. According to the results, a multiple supply chain strategy is recommended to be implemented in the case company, since the diversity of the customer needs cannot be managed efficiently through a single supply chain.
Resumo:
Purpose: Short product life cycle and/or mass customization necessitate reconfiguration of operational enablers of supply chain (SC) from time to time in order to harness high levels of performance. The purpose of this paper is to identify the key operational enablers under stochastic environment on which practitioner should focus while reconfiguring a SC network. Design/methodology/approach: The paper used interpretive structural modeling (ISM) approach that presents a hierarchy-based model and the mutual relationships among the enablers. The contextual relationship needed for developing structural self-interaction matrix (SSIM) among various enablers is realized by conducting experiments through simulation of a hypothetical SC network. Findings: The research identifies various operational enablers having a high driving power towards assumed performance measures. In this regard, these enablers require maximum attention and of strategic importance while reconfiguring SC. Practical implications: ISM provides a useful tool to the SC managers to strategically adopt and focus on the key enablers which have comparatively greater potential in enhancing the SC performance under given operational settings. Originality/value: The present research realizes the importance of SC flexibility under the premise of reconfiguration of the operational units in order to harness high value of SC performance. Given the resulting digraph through ISM, the decision maker can focus the key enablers for effective reconfiguration. The study is one of the first efforts that develop contextual relations among operational enablers for SSIM matrix through integration of discrete event simulation to ISM. © Emerald Group Publishing Limited.
Resumo:
The construction industry has incurred a considerable amount of waste as a result of poor logistics supply chain network management. Therefore, managing logistics in the construction industry is critical. An effective logistic system ensures delivery of the right products and services to the right players at the right time while minimising costs and rewarding all sectors based on value added to the supply chain. This paper reports on an on-going research study on the concept of context-aware services delivery in the construction project supply chain logistics. As part of the emerging wireless technologies, an Intelligent Wireless Web (IWW) using context-aware computing capability represents the next generation ICT application to construction-logistics management. This intelligent system has the potential of serving and improving the construction logistics through access to context-specific data, information and services. Existing mobile communication deployments in the construction industry rely on static modes of information delivery and do not take into account the worker’s changing context and dynamic project conditions. The major problems in these applications are lack of context-specificity in the distribution of information, services and other project resources, and lack of cohesion with the existing desktop based ICT infrastructure. The research works focus on identifying the context dimension such as user context, environmental context and project context, selection of technologies to capture context-parameters such wireless sensors and RFID, selection of supporting technologies such as wireless communication, Semantic Web, Web Services, agents, etc. The process of integration of Context-Aware Computing and Web-Services to facilitate the creation of intelligent collaboration environment for managing construction logistics will take into account all the necessary critical parameters such as storage, transportation, distribution, assembly, etc. within off and on-site project.
Resumo:
In the contemporary business environment, to adhere to the need of the customers, caused the shift from mass production to mass-customization. This necessitates the supply chain (SC) to be effective flexible. The purpose of this paper is to seek flexibility through adoption of family-based dispatching rules under the influence of inventory system implemented at downstream echelons of an industrial supply chain network. We compared the family-based dispatching rules in existing literature under the purview of inventory system and information sharing within a supply chain network. The dispatching rules are compared for Average Flow Time performance, which is averaged over the three product families. The performance is measured using extensive discrete event simulation process. Given the various inventory related operational factors at downstream echelons, the present paper highlights the importance of strategically adopting appropriate family-based dispatching rule at the manufacturing end. In the environment of mass customization, it becomes imperative to adopt the family-based dispatching rule from the system wide SC perspective. This warrants the application of intra as well as inter-echelon information coordination. The holonic paradigm emerges in this research stream, amidst the holistic approach and the vital systemic approach. The present research shows its novelty in triplet. Firstly, it provides leverage to manager to strategically adopting a dispatching rule from the inventory system perspective. Secondly, the findings provide direction for the attenuation of adverse impact accruing from demand amplification (bullwhip effect) in the form of inventory levels by appropriately adopting family-based dispatching rule. Thirdly, the information environment is conceptualized under the paradigm of Koestler's holonic theory.
Resumo:
The objective of this paper is to conceptualize Supply Chain Resilience (SCRes) and identify which supply chain capabilities can support the containment of disruptions and how these capabilities affect SCRes. Through a systematic and structured review of literature, this paper provides insights into the conceptualization and research methodological background of the SCM field. A total of one hundred and thirty four carefully selected refereed journal articles were systematically analyzed leading to the introduction of a novel definition for SCRes, which the authors view as the as “the ability to proactively plan and design the Supply Chain network for anticipating unexpected disruptive (negative) events, respond adaptively to disruptions while maintaining control over structure and function and transcending to a post-event robust state of operations, if possible, more favorable than the one prior to the event, thus gaining competitive advantage”. Finally, a critical examination of existing conceptual frameworks for understanding the relationships between the SCRes concept and its identified formative elements, is taking place.
Resumo:
In this thesis, I focus on supply chain risk related ambiguity, which represents the ambiguities firms exhibit in recognizing, assessing, and responding to supply chain disruptions. I, primarily, argue that ambiguities associated with recognizing and responding to supply chain risk are information gathering and processing problems. Guided by the theoretical perspective of bounded rationality, I propose a typology of supply chain risk related ambiguity with four distinct dimensions. I, also, argue that the major contributor to risk related ambiguity is often the environment, specifically the web of suppliers. Hence, I focus on the characteristics of these supplier networks to examine the sources of ambiguity. I define three distinct elements of network embeddedness – relational, structural, and positional embeddedness – and argue that the ambiguity faced by a firm in appropriately identifying the nature or impacts of major disruptions is a function of these network properties. Based on a survey of large North American manufacturing firms, I found that the extent of the relational ties a firm has and its position in the network are significantly related to supply chain risk related ambiguity. However, this study did not provide any significant support for the hypothesized relationship between structural embeddedness and ambiguity. My research contributes towards the study of supply chain disruptions by using the idea of bounded rationality to understand supply chain risk related ambiguity and by providing evidence that the structure of supply chain networks influences the organizational understanding of and responses to supply chain disruptions.
Resumo:
A range of societal issues have been caused by fossil fuel consumption in the transportation sector in the United States (U.S.), including health related air pollution, climate change, the dependence on imported oil, and other oil related national security concerns. Biofuels production from various lignocellulosic biomass types such as wood, forest residues, and agriculture residues have the potential to replace a substantial portion of the total fossil fuel consumption. This research focuses on locating biofuel facilities and designing the biofuel supply chain to minimize the overall cost. For this purpose an integrated methodology was proposed by combining the GIS technology with simulation and optimization modeling methods. The GIS based methodology was used as a precursor for selecting biofuel facility locations by employing a series of decision factors. The resulted candidate sites for biofuel production served as inputs for simulation and optimization modeling. As a precursor to simulation or optimization modeling, the GIS-based methodology was used to preselect potential biofuel facility locations for biofuel production from forest biomass. Candidate locations were selected based on a set of evaluation criteria, including: county boundaries, a railroad transportation network, a state/federal road transportation network, water body (rivers, lakes, etc.) dispersion, city and village dispersion, a population census, biomass production, and no co-location with co-fired power plants. The simulation and optimization models were built around key supply activities including biomass harvesting/forwarding, transportation and storage. The built onsite storage served for spring breakup period where road restrictions were in place and truck transportation on certain roads was limited. Both models were evaluated using multiple performance indicators, including cost (consisting of the delivered feedstock cost, and inventory holding cost), energy consumption, and GHG emissions. The impact of energy consumption and GHG emissions were expressed in monetary terms to keep consistent with cost. Compared with the optimization model, the simulation model represents a more dynamic look at a 20-year operation by considering the impacts associated with building inventory at the biorefinery to address the limited availability of biomass feedstock during the spring breakup period. The number of trucks required per day was estimated and the inventory level all year around was tracked. Through the exchange of information across different procedures (harvesting, transportation, and biomass feedstock processing procedures), a smooth flow of biomass from harvesting areas to a biofuel facility was implemented. The optimization model was developed to address issues related to locating multiple biofuel facilities simultaneously. The size of the potential biofuel facility is set up with an upper bound of 50 MGY and a lower bound of 30 MGY. The optimization model is a static, Mathematical Programming Language (MPL)-based application which allows for sensitivity analysis by changing inputs to evaluate different scenarios. It was found that annual biofuel demand and biomass availability impacts the optimal results of biofuel facility locations and sizes.
Resumo:
This paper analyzes the theme of knowledge transfer in supply chain management. The aim of this study is to present the social network analysis (SNA) as an useful tool to study knowledge networks within supply chain, to monitor knowledge flows and to identify the accumulating knowledge nodes of the networks.
Resumo:
The aim of this paper is to propose a conceptual framework for studying the knowledge transfer problem within the supply chain. The social network analysis (SNA) is presented as a useful tool to study knowledge networks within supply chain, to visualize knowledge flows and to identify the accumulating knowledge nodes of the networks. © 2011 IEEE.
Resumo:
Purpose: This paper aims to explore the role of internal and external knowledgebased linkages across the supply chain in achieving better operational performance. It investigates how knowledge is accumulated, shared, and applied to create organization-specific knowledge resources that increase and sustain the organization's competitive advantage. Design/methodology/approach: This paper uses a single case study with multiple, embedded units of analysis, and the social network analysis (SNA) to demonstrate the impact of internal and external knowledge-based linkages across multiple tiers in the supply chain on the organizational operational performance. The focal company of the case study is an Italian manufacturer supplying rubber components to European automotive enterprises. Findings: With the aid of the SNA, the internal knowledge-based linkages can be mapped and visualized. We found that the most central nodes having the most connections with other nodes in the linkages are the most crucial members in terms of knowledge exploration and exploitation within the organization. We also revealed that the effective management of external knowledge-based linkages, such as buyer company, competitors, university, suppliers, and subcontractors, can help improve the operational performance. Research limitations/implications: First, our hypothesis was tested on a single case. The analysis of multiple case studies using SNA would provide a deeper understanding of the relationship between the knowledge-based linkages at all levels of the supply chain and the integration of knowledge. Second, the static nature of knowledge flows was studied in this research. Future research could also consider ongoing monitoring of dynamic linkages and the dynamic characteristic of knowledge flows. Originality/value: To the best of our knowledge, the phrase 'knowledge-based linkages' has not been used in the literature and there is lack of investigation on the relationship between the management of internal and external knowledge-based linkages and the operational performance. To bridge the knowledge gap, this paper will show the importance of understanding the composition and characteristics of knowledge-based linkages and their knowledge nodes. In addition, this paper will show that effective management of knowledge-based linkages leads to the creation of new knowledge and improves organizations' operational performance.
Resumo:
Dissertação de Mestrado em Ciências Económicas e Empresariais.
Resumo:
Dissertação para a obtenção de Grau de Mestre em Engenharia e Gestão Industrial