856 resultados para motion segmentation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel technique for estimating the rank of the trajectory matrix in the local subspace affinity (LSA) motion segmentation framework is presented. This new rank estimation is based on the relationship between the estimated rank of the trajectory matrix and the affinity matrix built with LSA. The result is an enhanced model selection technique for trajectory matrix rank estimation by which it is possible to automate LSA, without requiring any a priori knowledge, and to improve the final segmentation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a novel rank estimation technique for trajectories motion segmentation within the Local Subspace Affinity (LSA) framework is presented. This technique, called Enhanced Model Selection (EMS), is based on the relationship between the estimated rank of the trajectory matrix and the affinity matrix built by LSA. The results on synthetic and real data show that without any a priori knowledge, EMS automatically provides an accurate and robust rank estimation, improving the accuracy of the final motion segmentation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents methods for moving object detection in airborne video surveillance. The motion segmentation in the above scenario is usually difficult because of small size of the object, motion of camera, and inconsistency in detected object shape etc. Here we present a motion segmentation system for moving camera video, based on background subtraction. An adaptive background building is used to take advantage of creation of background based on most recent frame. Our proposed system suggests CPU efficient alternative for conventional batch processing based background subtraction systems. We further refine the segmented motion by meanshift based mode association.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a novel rank estimation technique for trajectories motion segmentation within the Local Subspace Affinity (LSA) framework is presented. This technique, called Enhanced Model Selection (EMS), is based on the relationship between the estimated rank of the trajectory matrix and the affinity matrix built by LSA. The results on synthetic and real data show that without any a priori knowledge, EMS automatically provides an accurate and robust rank estimation, improving the accuracy of the final motion segmentation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel technique for estimating the rank of the trajectory matrix in the local subspace affinity (LSA) motion segmentation framework is presented. This new rank estimation is based on the relationship between the estimated rank of the trajectory matrix and the affinity matrix built with LSA. The result is an enhanced model selection technique for trajectory matrix rank estimation by which it is possible to automate LSA, without requiring any a priori knowledge, and to improve the final segmentation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En aquesta tesi s’estudia el problema de la segmentació del moviment. La tesi presenta una revisió dels principals algoritmes de segmentació del moviment, s’analitzen les característiques principals i es proposa una classificació de les tècniques més recents i importants. La segmentació es pot entendre com un problema d’agrupament d’espais (manifold clustering). Aquest estudi aborda alguns dels reptes més difícils de la segmentació de moviment a través l’agrupament d’espais. S’han proposat nous algoritmes per a l’estimació del rang de la matriu de trajectòries, s’ha presenta una mesura de similitud entre subespais, s’han abordat problemes relacionats amb el comportament dels angles canònics i s’ha desenvolupat una eina genèrica per estimar quants moviments apareixen en una seqüència. L´ultima part de l’estudi es dedica a la correcció de l’estimació inicial d’una segmentació. Aquesta correcció es du a terme ajuntant els problemes de la segmentació del moviment i de l’estructura a partir del moviment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many algorithms have been developed to achieve motion segmentation for video surveillance. The algorithms produce varying performances under the infinite amount of changing conditions. It has been recognised that individually these algorithms have useful properties. Fusing the statistical result of these algorithms is investigated, with robust motion segmentation in mind.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Automatically extracting interesting objects from videos is a very challenging task and is applicable to many research areas such robotics, medical imaging, content based indexing and visual surveillance. Automated visual surveillance is a major research area in computational vision and a commonly applied technique in an attempt to extract objects of interest is that of motion segmentation. Motion segmentation relies on the temporal changes that occur in video sequences to detect objects, but as a technique it presents many challenges that researchers have yet to surmount. Changes in real-time video sequences not only include interesting objects, environmental conditions such as wind, cloud cover, rain and snow may be present, in addition to rapid lighting changes, poor footage quality, moving shadows and reflections. The list provides only a sample of the challenges present. This thesis explores the use of motion segmentation as part of a computational vision system and provides solutions for a practical, generic approach with robust performance, using current neuro-biological, physiological and psychological research in primate vision as inspiration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a neuroscience inspired information theoretic approach to motion segmentation. Robust motion segmentation represents a fundamental first stage in many surveillance tasks. As an alternative to widely adopted individual segmentation approaches, which are challenged in different ways by imagery exhibiting a wide range of environmental variation and irrelevant motion, this paper presents a new biologically-inspired approach which computes the multivariate mutual information between multiple complementary motion segmentation outputs. Performance evaluation across a range of datasets and against competing segmentation methods demonstrates robust performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While a multitude of motion segmentation algorithms have been presented in the literature, there has not been an objective assessment of different approaches to fusing their outputs. This paper investigates the application of 4 different fusion schemes to the outputs of 3 probabilistic pixel-level segmentation algorithms. We performed an extensive experimentation using 6 challenge categories from the changedetection.net dataset demonstrating that in general simple majority vote proves to be more effective than more complex fusion schemes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Theories of image segmentation suggest that the human visual system may use two distinct processes to segregate figure from background: a local process that uses local feature contrasts to mark borders of coherent regions and a global process that groups similar features over a larger spatial scale. We performed psychophysical experiments to determine whether and to what extent the global similarity process contributes to image segmentation by motion and color. Our results show that for color, as well as for motion, segmentation occurs first by an integrative process on a coarse spatial scale, demonstrating that for both modalities the global process is faster than one based on local feature contrasts. Segmentation by motion builds up over time, whereas segmentation by color does not, indicating a fundamental difference between the modalities. Our data suggest that segmentation by motion proceeds first via a cooperative linking over space of local motion signals, generating almost immediate perceptual coherence even of physically incoherent signals. This global segmentation process occurs faster than the detection of absolute motion, providing further evidence for the existence of two motion processes with distinct dynamic properties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we evaluate the Probabilistic Occupancy Map (POM) pedestrian detection algorithm on the PETS 2009 benchmark dataset. POM is a multi-camera generative detection method, which estimates ground plane occupancy from multiple background subtraction views. Occupancy probabilities are iteratively estimated by fitting a synthetic model of the background subtraction to the binary foreground motion. Furthermore, we test the integration of this algorithm into a larger framework designed for understanding human activities in real environments. We demonstrate accurate detection and localization on the PETS dataset, despite suboptimal calibration and foreground motion segmentation input.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is a rising demand for the quantitative performance evaluation of automated video surveillance. To advance research in this area, it is essential that comparisons in detection and tracking approaches may be drawn and improvements in existing methods can be measured. There are a number of challenges related to the proper evaluation of motion segmentation, tracking, event recognition, and other components of a video surveillance system that are unique to the video surveillance community. These include the volume of data that must be evaluated, the difficulty in obtaining ground truth data, the definition of appropriate metrics, and achieving meaningful comparison of diverse systems. This chapter provides descriptions of useful benchmark datasets and their availability to the computer vision community. It outlines some ground truth and evaluation techniques, and provides links to useful resources. It concludes by discussing the future direction for benchmark datasets and their associated processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider the problem of fitting a union of subspaces to a collection of data points drawn from one or more subspaces and corrupted by noise and/or gross errors. We pose this problem as a non-convex optimization problem, where the goal is to decompose the corrupted data matrix as the sum of a clean and self-expressive dictionary plus a matrix of noise and/or gross errors. By self-expressive we mean a dictionary whose atoms can be expressed as linear combinations of themselves with low-rank coefficients. In the case of noisy data, our key contribution is to show that this non-convex matrix decomposition problem can be solved in closed form from the SVD of the noisy data matrix. The solution involves a novel polynomial thresholding operator on the singular values of the data matrix, which requires minimal shrinkage. For one subspace, a particular case of our framework leads to classical PCA, which requires no shrinkage. For multiple subspaces, the low-rank coefficients obtained by our framework can be used to construct a data affinity matrix from which the clustering of the data according to the subspaces can be obtained by spectral clustering. In the case of data corrupted by gross errors, we solve the problem using an alternating minimization approach, which combines our polynomial thresholding operator with the more traditional shrinkage-thresholding operator. Experiments on motion segmentation and face clustering show that our framework performs on par with state-of-the-art techniques at a reduced computational cost.