992 resultados para mitochondrial haplogroups


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Introduction: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers.

Methods: We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals.

Results: We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of clade T (hazard ratio (HR) = 0.55; 95% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk.

Conclusions: This study illustrates how original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Animal domestication was a major step forward in human prehistory, contributing to the emergence of more complex societies. At the time of the Neolithic transition, zebu cattle (Bos indicus) were probably the most abundant and important domestic livestock species in Southern Asia. Although archaeological evidence points toward the domestication of zebu cattle within the Indian subcontinent, the exact geographic origins and phylogenetic history of zebu cattle remains uncertain. Here, we report evidence from 844 zebu mitochondrial DNA (mtDNA) sequences surveyed from 19 Asiatic countries comprising 8 regional groups, which identify 2 distinct mitochondrial haplogroups, termed I1 and I2. The marked increase in nucleotide diversity (P < 0.001) for both the I1 and I2 haplogroups within the northern part of the Indian subcontinent is consistent with an origin for all domestic zebu in this area. For haplogroup I1, genetic diversity was highest within the Indus Valley among the three hypothesized domestication centers (Indus Valley, Ganges, and South India). These data support the Indus Valley as the most likely center of origin for the I1 haplogroup and a primary center of zebu domestication. However, for the I2 haplogroup, a complex pattern of diversity is detected, preventing the unambiguous pinpointing of the exact place of origin for this zebu maternal lineage. Our findings are discussed with respect to the archaeological record for zebu domestication within the Indian subcontinent.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To re-examine the correlation between mtDNA variability and longevity, we examined mtDNAs from samples obtained from over 2200 ultranonagenarians (and an equal number of controls) collected within the framework of the GEHA EU project. The samples were categorized by high-resolution classification, while about 1300 mtDNA molecules (650 ultranonagenarians and an equal number of controls) were completely sequenced. Sequences, unlike standard haplogroup analysis, made possible to evaluate for the first time the cumulative effects of specific, concomitant mtDNA mutations, including those that per se have a low, or very low, impact. In particular, the analysis of the mutations occurring in different OXPHOS complex showed a complex scenario with a different mutation burden in 90+ subjects with respect to controls. These findings suggested that mutations in subunits of the OXPHOS complex I had a beneficial effect on longevity, while the simultaneous presence of mutations in complex I and III (which also occurs in J subhaplogroups involved in LHON) and in complex I and V seemed to be detrimental, likely explaining previous contradictory results. On the whole, our study, which goes beyond haplogroup analysis, suggests that mitochondrial DNA variation does affect human longevity, but its effect is heavily influenced by the interaction between mutations concomitantly occurring on different mtDNA genes

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background and aim: Knowledge about the genetic factors responsible for noise-induced hearing loss (NIHL) is still limited. This study investigated whether genetic factors are associated or not to susceptibility to NIHL. Subjects and methods: The family history and genotypes were studied for candidate genes in 107 individuals with NIHL, 44 with other causes of hearing impairment and 104 controls. Mutations frequently found among deaf individuals were investigated (35delG, 167delT in GJB2, Delta(GJB6- D13S1830), Delta(GJB6- D13S1854) in GJB6 and A1555G in MT-RNR1 genes); allelic and genotypic frequencies were also determined at the SNP rs877098 in DFNB1, of deletions of GSTM1 and GSTT1 and sequence variants in both MTRNR1 and MTTS1 genes, as well as mitochondrial haplogroups. Results: When those with NIHL were compared with the control group, a significant increase was detected in the number of relatives affected by hearing impairment, of the genotype corresponding to the presence of both GSTM1 and GSTT1 enzymes and of cases with mitochondrial haplogroup L1. Conclusion: The findings suggest effects of familial history of hearing loss, of GSTT1 and GSTM1 enzymes and of mitochondrial haplogroup L1 on the risk of NIHL. This study also described novel sequence variants of MTRNR1 and MTTS1 genes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The primary objective of this proposal was to determine whether mitochondrial oxidative stress and variation in a particular mtDNA lineage contribute to the risk of developing cortical dysplasia and are potential contributing factors in epileptogenesis in children. The occurrence of epilepsy in children is highly associated with malformations of cortical development (MCD). It appears that MCD might arise from developmental errors due to environmental exposures in combination with inherited variation in response to environmental exposures and mitochondrial function. Therefore, it is postulated that variation in a particular mtDNA lineage of children contributes to the effects of mitochondrial DNA damage on MCD phenotype. Quantitative PCR and dot blot were used to examine mitochondrial oxidative damage and single nucleotide polymorphism (SNP) in the mitochondrial genome in brain tissue from 48 pediatric intractable epilepsy patients from Miami Children’s Hospital and 11 control samples from NICHD Brain and Tissue Bank for Developmental Disorders. Epilepsy patients showed higher mtDNA copy number compared to normal health subjects (controls). Oxidative mtDNA damage was lower in non-neoplastic but higher in neoplastic epilepsy patients compared to controls. There was a trend of lower mtDNA oxidative damage in the non-neoplastic (MCD) patients compared to controls, yet, the reverse was observed in neoplastic (MCD and Non-MCD) epilepsy patients. The presence of mtDNA SNP and haplogroups did not show any statistically significant relationships with epilepsy phenotypes. However, SNPs G9804A and G9952A were found in higher frequencies in epilepsy samples. Logistic regression analysis showed no relationship between mtDNA oxidative stress, mtDNA copy number, mitochondrial haplogroups and SNP variations with epilepsy in pediatric patients. The levels of mtDNA copy number and oxidative mtDNA damage and the SNPs G9952A and T10010C predicted neoplastic epilepsy, however, this was not significant due to a small sample size of pediatric subjects. Findings of this study indicate that an increase in mtDNA content may be compensatory mechanisms for defective mitochondria in intractable epilepsy and brain tumor. Further validation of these findings related to mitochondrial genotypes and mitochondrial dysfunction in pediatric epilepsy and MCD may lay the ground for the development of new therapies and prevention strategies during embryogenesis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Leber hereditary optic neuropathy (LHON) is the most extensively studied mitochondrial disease, with the majority of the cases being caused by one of three primary mitochondrial DNA (mtDNA) mutations. Incomplete disease penetrance and gender bias are two

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

SNaPshot minisequencing reaction is in increasing use because of its fast detection of many polymorphisms in a single assay. In this work we described a highly sensitive single nucleotide polymorphisms (SNPs) typing method with detection of 42 mitochondrial DNA (mtDNA) SNPs in a single PCR and SNaPshot multiplex reaction in order to allow haplogroup classification in Latin American admixture population. We validated the panel typing 160 Brazilian individuals. DNA was extracted from blood spotted on filter paper using Chelex protocol. Forty SNPs were selected targeting haplogroup-specific mutations in Europeans, Africans and Asians (only precursors of Native Americans haplogroups A2, B2, C1, and D1) and two non-coding SNPs were chosen to increase the power of discrimination between individuals (SNPs positions 16,519 and 16,362). It was done using a modified version of a previously published multiplex SNaPshot minisequencing reaction established to resolve European haplogroups, adding SNPs targeting Africans (L0, L1, L2, L3, and L*) and Asians (A, B, C, and D) haplogroups based on SNPs described at PhyloTree.org build 2. PCR primers were designed using PerlPrimer software and checked with the Autodimer program. Thirty-three primer-pairs were used to amplify 42 SNPs. Using this panel, we were able to successfully classify 160 individuals into their correct haplogroups. Complete SNP profiles were obtained from 10. pg of total DNA. We conclude that it is possible to build and genotype more than 40 mtDNA SNPs in a single multiplex PCR and SNaPshot reaction, with sensitivity and reliability, resolving haplogroup classification in admixture populations. © 2011.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this research was to assess the role of genetic variation in mitochondrial function and how this relates to migraine pathophysiology. Using our unique Norfolk Island population, a custom in-house next generation sequencing methodology was developed. This data for the first time showed that there is a molecular genetic link between mitochondrial dysfunction and migraine susceptibility. This work has provided the foundation for further studies aimed at utilising the identified markers in improved migraine diagnostic and therapeutic strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To study the mitochondrial DNA (mtDNA) polymorphisms in a total of 232 individuals from five ethnic populations (Daur, n=45; Ewenki, n=47; Korean, n=48; Mongolian, n=48; Oroqen, n=44) in northern China, we analyzed the control region sequences and typed for a number of characteristic mutations in coding regions (especially the region 14576-16047), by direct sequencing or restriction-fragment-length-polymorphism (RFLP) analysis. With the exception of 14 individuals belonging to the European-specific haplogroups R2, H, J, and T, the mtDNAs considered could be assigned into the East Asian-specific haplogroups described recently. The polymorphisms in cytochrome b sequence were found to be very informative for defining or supporting the haplogroups status of East Asian mtDNAs in addition to the reported regions 10171-10659 and 14055-14590 in our previous study. The haplogroup distribution frequencies varied in the five ethnic populations, but in general they all harbored a large amount of north-prevalent haplogroups, such as D, G, C, and Z, and thus were in agreement with their ethnohistory of northern origin. The two populations (Ewenki and Oroqen) with small population census also show concordant features in their matrilineal genetic structures, with lower genetic diversities observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The now-emerging mitochondrial DNA ( mtDNA) population genomics provides information for reconstructing a well-resolved mtDNA phylogeny and for discerning the phylogenetic status of the subcontinentally specific haplogroups. Although several major East Asian mtDNA haplogroups have been identified in studies elsewhere, some of the most basal haplogroups, as well as numerous minor subhaplogroups, were not yet determined or fully characterized. To fill the lacunae, we selected 48 mtDNAs from >2,000 samples across China for complete sequencing that cover virtually all ( sub) haplogroups discernible to date in East Asia. This East Asian mtDNA phylogeny can henceforth serve as a solid basis for phylogeographic analyses of mtDNAs, as well as for studies of mitochondrial diseases in East and Southeast Asia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hakka and Chaoshanese are two unique Han populations residing in southern China but with northern Han (NH) cultural traditions and linguistic influences. Although most of historical records indicate that both populations migrated from northern China in the last two thousand years, no consensus on their origins has been reached so far. To shed more light on the origins of Hakka and Chaoshanese, mitochondrial DNAs (mtDNAs) of 170 Hakka from Meizhou and 102 Chaoshanese from Chaoshan area, Guangdong Province, were analyzed. Our results show that some southern Chinese predominant haplogroups, e.g. B, F, and M7, have relatively high frequencies in both populations. Although median network analyses show that Hakka/Chaoshanese share some haplotypes with NH, interpopulation comparison reveals that both populations show closer affinity with southern Han (SH) populations than with NH. In consideration of previous results from nuclear gene (including Y chromosome) research, it is likely that matrilineal landscapes of both Hakka and Chaoshanese have largely been shaped by the local people during their migration southward and/or later colonization in southern China, and factors such as cultural assimilation, patrilocality, and even sex-bias in the immigrants might have played important roles during the process. Am J Phys Anthropol 141:124-130, 2010. (C) 2009 Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To resolve the phylogeny of the autochthonous mitochondrial DNA (mtDNA) haplogroups of India and determine the relationship between the Indian and western Eurasian mtDNA pools more precisely, a diverse subset of 75 macrohaplogroup N lineages was chosen fo

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The maternal and paternal genetic profile of Guineans is markedly sub-Saharan West African, with the majority of lineages belonging to L0-L3 mtDNA sub-clusters and E3a-M2 and E1-M33 Y chromosome haplogroups. Despite the sociocultural differences among Guinea-Bissau ethnic groups,marked by the supposedly strict admixture barriers, their genetic pool remains largely common. Their extant variation coalesces at distinct timeframes, from the initial occupation of the area to later inputs of people. Signs of recent expansion in mtDNA haplogroups L2a-L2c and NRY E3a-M2 suggest population growth in the equatorial western fringe, possibly supported by an early local agricultural centre, and to which the Mandenka and the Balanta people may relate. Non-West African signatures are traceable in less frequent extant haplogroups, fitting well with the linguistic and historical evidence regarding particular ethnic groups: the Papel and Felupe-Djola people retain traces of their putative East African relatives; U6 and M1b among Guinea-Bissau Bak-speakers indicate partial diffusion to Sahel of North African lineages; U5b1b lineages in Fulbe and Papel represent a link to North African Berbers, emphasizing the great importance of post-glacial expansions; exact matches of R1b-P25 and E3b1-M78 with Europeans likely trace back to the times of the slave trade.