997 resultados para minimization methods


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Among different phase unwrapping approaches, the weighted least-squares minimization methods are gaining attention. In these algorithms, weighting coefficient is generated from a quality map. The intrinsic drawbacks of existing quality maps constrain the application of these algorithms. They often fail to handle wrapped phase data contains error sources, such as phase discontinuities, noise and undersampling. In order to deal with those intractable wrapped phase data, a new weighted least-squares phase unwrapping algorithm based on derivative variance correlation map is proposed. In the algorithm, derivative variance correlation map, a novel quality map, can truly reflect wrapped phase quality, ensuring a more reliable unwrapped result. The definition of the derivative variance correlation map and the principle of the proposed algorithm are present in detail. The performance of the new algorithm has been tested by use of a simulated spherical surface wrapped data and an experimental interferometric synthetic aperture radar (IFSAR) wrapped data. Computer simulation and experimental results have verified that the proposed algorithm can work effectively even when a wrapped phase map contains intractable error sources. (c) 2006 Elsevier GmbH. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sparse representation based visual tracking approaches have attracted increasing interests in the community in recent years. The main idea is to linearly represent each target candidate using a set of target and trivial templates while imposing a sparsity constraint onto the representation coefficients. After we obtain the coefficients using L1-norm minimization methods, the candidate with the lowest error, when it is reconstructed using only the target templates and the associated coefficients, is considered as the tracking result. In spite of promising system performance widely reported, it is unclear if the performance of these trackers can be maximised. In addition, computational complexity caused by the dimensionality of the feature space limits these algorithms in real-time applications. In this paper, we propose a real-time visual tracking method based on structurally random projection and weighted least squares techniques. In particular, to enhance the discriminative capability of the tracker, we introduce background templates to the linear representation framework. To handle appearance variations over time, we relax the sparsity constraint using a weighed least squares (WLS) method to obtain the representation coefficients. To further reduce the computational complexity, structurally random projection is used to reduce the dimensionality of the feature space while preserving the pairwise distances between the data points in the feature space. Experimental results show that the proposed approach outperforms several state-of-the-art tracking methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Information about time or space is often expressed in terms of points or intervals, and the relations between points and intervals. The interval based representations fall into two distinct classes based on: (i) closure and (ii) minimal representation of the domain. The advantage of closure based representation is the minimal search time at the expense of time to construct the representation, and the storage requirement. Minimal representation optimises storage required, at the expense of construction and search time. Intervals can be represented in terms of their end points. The information about points can be effectively represented using the closure approach but intervals cannot be represented with their endpoints using a point algebra system.

This paper proposes a point based system of representation for interval relations that does not perform closure. Point information is represented in terms of the known relationships between points. The costs of such a representation lies between the expense of closure and minimisation. The time taken for search and construction is better than for minimisation but not as good as for closure. Respectively, the space used is better than for closure but not as good as for minimisation

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work was developed aiming to evaluate the environmental impacts of the public use in natural touristic attractive at Altinópolis city (SP), using the Visitor Impact Management method (VTM). In each analyzed natural resource a specific questionnaire was elaborated in accordance with the appropriate pointers that allowed to determinate environmental quality of each point. The results indicated that only two tourist areas need special attention for their preservation. Minimization methods, monitoring and educational practices are proposals in order to tourist practices be made with environmental responsibility.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work we devise two novel algorithms for blind deconvolution based on a family of logarithmic image priors. In contrast to recent approaches, we consider a minimalistic formulation of the blind deconvolution problem where there are only two energy terms: a least-squares term for the data fidelity and an image prior based on a lower-bounded logarithm of the norm of the image gradients. We show that this energy formulation is sufficient to achieve the state of the art in blind deconvolution with a good margin over previous methods. Much of the performance is due to the chosen prior. On the one hand, this prior is very effective in favoring sparsity of the image gradients. On the other hand, this prior is non convex. Therefore, solutions that can deal effectively with local minima of the energy become necessary. We devise two iterative minimization algorithms that at each iteration solve convex problems: one obtained via the primal-dual approach and one via majorization-minimization. While the former is computationally efficient, the latter achieves state-of-the-art performance on a public dataset.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Existe normalmente el propósito de obtener la mejor solución posible cuando se plantea un problema estructural, entendiendo como mejor la solución que cumpliendo los requisitos estructurales, de uso, etc., tiene un coste físico menor. En una primera aproximación se puede representar el coste físico por medio del peso propio de la estructura, lo que permite plantear la búsqueda de la mejor solución como la de menor peso. Desde un punto de vista práctico, la obtención de buenas soluciones—es decir, soluciones cuyo coste sea solo ligeramente mayor que el de la mejor solución— es una tarea tan importante como la obtención de óptimos absolutos, algo en general difícilmente abordable. Para disponer de una medida de la eficiencia que haga posible la comparación entre soluciones se propone la siguiente definición de rendimiento estructural: la razón entre la carga útil que hay que soportar y la carga total que hay que contabilizar (la suma de la carga útil y el peso propio). La forma estructural puede considerarse compuesta por cuatro conceptos, que junto con el material, definen una estructura: tamaño, esquema, proporción, y grueso.Galileo (1638) propuso la existencia de un tamaño insuperable para cada problema estructural— el tamaño para el que el peso propio agota una estructura para un esquema y proporción dados—. Dicho tamaño, o alcance estructural, será distinto para cada material utilizado; la única información necesaria del material para su determinación es la razón entre su resistencia y su peso especifico, una magnitud a la que denominamos alcance del material. En estructuras de tamaño muy pequeño en relación con su alcance estructural la anterior definición de rendimiento es inútil. En este caso —estructuras de “talla nula” en las que el peso propio es despreciable frente a la carga útil— se propone como medida del coste la magnitud adimensional que denominamos número de Michell, que se deriva de la “cantidad” introducida por A. G. M. Michell en su artículo seminal de 1904, desarrollado a partir de un lema de J. C. Maxwell de 1870. A finales del siglo pasado, R. Aroca combino las teorías de Galileo y de Maxwell y Michell, proponiendo una regla de diseño de fácil aplicación (regla GA), que permite la estimación del alcance y del rendimiento de una forma estructural. En el presente trabajo se estudia la eficiencia de estructuras trianguladas en problemas estructurales de flexión, teniendo en cuenta la influencia del tamaño. Por un lado, en el caso de estructuras de tamaño nulo se exploran esquemas cercanos al optimo mediante diversos métodos de minoración, con el objetivo de obtener formas cuyo coste (medido con su numero deMichell) sea muy próximo al del optimo absoluto pero obteniendo una reducción importante de su complejidad. Por otro lado, se presenta un método para determinar el alcance estructural de estructuras trianguladas (teniendo en cuenta el efecto local de las flexiones en los elementos de dichas estructuras), comparando su resultado con el obtenido al aplicar la regla GA, mostrando las condiciones en las que es de aplicación. Por último se identifican las líneas de investigación futura: la medida de la complejidad; la contabilidad del coste de las cimentaciones y la extensión de los métodos de minoración cuando se tiene en cuenta el peso propio. ABSTRACT When a structural problem is posed, the intention is usually to obtain the best solution, understanding this as the solution that fulfilling the different requirements: structural, use, etc., has the lowest physical cost. In a first approximation, the physical cost can be represented by the self-weight of the structure; this allows to consider the search of the best solution as the one with the lowest self-weight. But, from a practical point of view, obtaining good solutions—i.e. solutions with higher although comparable physical cost than the optimum— can be as important as finding the optimal ones, because this is, generally, a not affordable task. In order to have a measure of the efficiency that allows the comparison between different solutions, a definition of structural efficiency is proposed: the ratio between the useful load and the total load —i.e. the useful load plus the self-weight resulting of the structural sizing—. The structural form can be considered to be formed by four concepts, which together with its material, completely define a particular structure. These are: Size, Schema, Slenderness or Proportion, and Thickness. Galileo (1638) postulated the existence of an insurmountable size for structural problems—the size for which a structure with a given schema and a given slenderness, is only able to resist its self-weight—. Such size, or structural scope will be different for every different used material; the only needed information about the material to determine such size is the ratio between its allowable stress and its specific weight: a characteristic length that we name material structural scope. The definition of efficiency given above is not useful for structures that have a small size in comparison with the insurmountable size. In this case—structures with null size, inwhich the self-weight is negligible in comparisonwith the useful load—we use as measure of the cost the dimensionless magnitude that we call Michell’s number, an amount derived from the “quantity” introduced by A. G. M. Michell in his seminal article published in 1904, developed out of a result from J. C.Maxwell of 1870. R. Aroca joined the theories of Galileo and the theories of Maxwell and Michell, obtaining some design rules of direct application (that we denominate “GA rule”), that allow the estimation of the structural scope and the efficiency of a structural schema. In this work the efficiency of truss-like structures resolving bending problems is studied, taking into consideration the influence of the size. On the one hand, in the case of structures with null size, near-optimal layouts are explored using several minimization methods, in order to obtain forms with cost near to the absolute optimum but with a significant reduction of the complexity. On the other hand, a method for the determination of the insurmountable size for truss-like structures is shown, having into account local bending effects. The results are checked with the GA rule, showing the conditions in which it is applicable. Finally, some directions for future research are proposed: the measure of the complexity, the cost of foundations and the extension of optimization methods having into account the self-weight.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta tese apresenta uma abordagem para a criação rápida de modelos em diferentes geometrias (complexas ou de alta simetria) com objetivo de calcular a correspondente intensidade espalhada, podendo esta ser utilizada na descrição de experimentos de es- palhamento à baixos ângulos. A modelagem pode ser realizada com mais de 100 geome- trias catalogadas em um Banco de Dados, além da possibilidade de construir estruturas a partir de posições aleatórias distribuídas na superfície de uma esfera. Em todos os casos os modelos são gerados por meio do método de elementos finitos compondo uma única geometria, ou ainda, compondo diferentes geometrias, combinadas entre si a partir de um número baixo de parâmetros. Para realizar essa tarefa foi desenvolvido um programa em Fortran, chamado de Polygen, que permite modelar geometrias convexas em diferentes formas, como sólidos, cascas, ou ainda com esferas ou estruturas do tipo DNA nas arestas, além de usar esses modelos para simular a curva de intensidade espalhada para sistemas orientados e aleatoriamente orientados. A curva de intensidade de espalhamento é calculada por meio da equação de Debye e os parâmetros que compõe cada um dos modelos, podem ser otimizados pelo ajuste contra dados experimentais, por meio de métodos de minimização baseados em simulated annealing, Levenberg-Marquardt e algorítmicos genéticos. A minimização permite ajustar os parâmetros do modelo (ou composição de modelos) como tamanho, densidade eletrônica, raio das subunidades, entre outros, contribuindo para fornecer uma nova ferramenta para modelagem e análise de dados de espalhamento. Em outra etapa desta tese, é apresentado o design de modelos atomísticos e a sua respectiva simulação por Dinâmica Molecular. A geometria de dois sistemas auto-organizado de DNA na forma de octaedro truncado, um com linkers de 7 Adeninas e outro com linkers de ATATATA, foram escolhidas para realizar a modelagem atomística e a simulação por Dinâmica Molecular. Para este sistema são apresentados os resultados de Root Mean Square Deviations (RMSD), Root Mean Square Fluctuations (RMSF), raio de giro, torção das hélices duplas de DNA além da avaliação das ligações de Hidrogênio, todos obtidos por meio da análise de uma trajetória de 50 ns.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Deformable Template models are first applied to track the inner wall of coronary arteries in intravascular ultrasound sequences, mainly in the assistance to angioplasty surgery. A circular template is used for initializing an elliptical deformable model to track wall deformation when inflating a balloon placed at the tip of the catheter. We define a new energy function for driving the behavior of the template and we test its robustness both in real and synthetic images. Finally we introduce a framework for learning and recognizing spatio-temporal geometric constraints based on Principal Component Analysis (eigenconstraints).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we propose two Bayesian methods for detecting and grouping junctions. Our junction detection method evolves from the Kona approach, and it is based on a competitive greedy procedure inspired in the region competition method. Then, junction grouping is accomplished by finding connecting paths between pairs of junctions. Path searching is performed by applying a Bayesian A* algorithm that has been recently proposed. Both methods are efficient and robust, and they are tested with synthetic and real images.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Damage localization induced by strain softening can be predicted by the direct minimization of a global energy function. This article concerns the computational strategy for implementing this principle for softening materials such as concrete. Instead of using heuristic global optimization techniques, our strategies are a hybrid of local optimization methods with a path-finding approach to ensure a global optimum. With admissible nodal displacements being independent variables, it is easy to deal with the geometric (mesh) constraint conditions. The direct search optimization methods recover the localized solutions for a range of softening lattice models which are representative of quasi-brittle structures

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the behavior of the empirical minimization algorithm using various methods. We first analyze it by comparing the empirical, random, structure and the original one on the class, either in an additive sense, via the uniform law of large numbers, or in a multiplicative sense, using isomorphic coordinate projections. We then show that a direct analysis of the empirical minimization algorithm yields a significantly better bound, and that the estimates we obtain are essentially sharp. The method of proof we use is based on Talagrand’s concentration inequality for empirical processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The railhead is severely stressed under the localized wheel contact patch close to the gaps in insulated rail joints. A modified railhead profile in the vicinity of the gapped joint, through a shape optimization model based on a coupled genetic algorithm and finite element method, effectively alters the contact zone and reduces the railhead edge stress concentration significantly. Two optimization methods, a grid search method and a genetic algorithm, were employed for this optimization problem. The optimal results from these two methods are discussed and, in particular, their suitability for the rail end stress minimization problem is studied. Through several numerical examples, the optimal profile is shown to be unaffected by either the magnitude or the contact position of the loaded wheel. The numerical results are validated through a large-scale experimental study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, non-linear programming techniques are applied to the problem of controlling the vibration pattern of a stretched string. First, the problem of finding the magnitudes of two control forces applied at two points l1 and l2 on the string to reduce the energy of vibration over the interval (l1, l2) relative to the energy outside the interval (l1, l2) is considered. For this problem the relative merits of various methods of non-linear programming are compared. The more complicated problem of finding the positions and magnitudes of two control forces to obtain the desired energy pattern is then solved by using the slack unconstrained minimization technique with the Fletcher-Powell search. In the discussion of the results it is shown that the position of the control force is very important in controlling the energy pattern of the string.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sparse estimation methods that utilize the l(p)-norm, with p being between 0 and 1, have shown better utility in providing optimal solutions to the inverse problem in diffuse optical tomography. These l(p)-norm-based regularizations make the optimization function nonconvex, and algorithms that implement l(p)-norm minimization utilize approximations to the original l(p)-norm function. In this work, three such typical methods for implementing the l(p)-norm were considered, namely, iteratively reweighted l(1)-minimization (IRL1), iteratively reweighted least squares (IRLS), and the iteratively thresholding method (ITM). These methods were deployed for performing diffuse optical tomographic image reconstruction, and a systematic comparison with the help of three numerical and gelatin phantom cases was executed. The results indicate that these three methods in the implementation of l(p)-minimization yields similar results, with IRL1 fairing marginally in cases considered here in terms of shape recovery and quantitative accuracy of the reconstructed diffuse optical tomographic images. (C) 2014 Optical Society of America