Bayesian models for finding and grouping junctions


Autoria(s): Cazorla, Miguel; Escolano Ruiz, Francisco; Gallardo López, Domingo; Rizo Aldeguer, Ramón
Contribuinte(s)

Universidad de Alicante. Departamento de Ciencia de la Computación e Inteligencia Artificial

Robótica y Visión Tridimensional (RoViT)

Laboratorio de Investigación en Visión Móvil (MVRLab)

Informática Industrial e Inteligencia Artificial

Data(s)

13/07/2012

13/07/2012

1999

Resumo

In this paper, we propose two Bayesian methods for detecting and grouping junctions. Our junction detection method evolves from the Kona approach, and it is based on a competitive greedy procedure inspired in the region competition method. Then, junction grouping is accomplished by finding connecting paths between pairs of junctions. Path searching is performed by applying a Bayesian A* algorithm that has been recently proposed. Both methods are efficient and robust, and they are tested with synthetic and real images.

Identificador

CAZORLA, M.A., et al. "Bayesian models for finding and grouping junctions". En: Energy Minimization Methods in Computer Vision and Pattern Recognition : Second International Workshop, EMMCVPR’99 York, UK, July 26–29, 1999 Proceedings / Edwin R. Hancock, Marcello Pelillo (Eds.). Berlin : Springer, 1999. (Lecture Notes in Computer Science; 1654). ISBN 3-540-66294-4, pp. 70-82

3-540-66294-4

0302-9743 (Print)

1611-3349 (Online)

http://hdl.handle.net/10045/23398

10.1007/3-540-48432-9_6

Idioma(s)

eng

Publicador

Springer Berlin / Heidelberg

Relação

http://dx.doi.org/10.1007/3-540-48432-9_6

Direitos

The original publication is available at www.springerlink.com

info:eu-repo/semantics/restrictedAccess

Palavras-Chave #Bayesian methods #Junction detection #Junction grouping #Ciencia de la Computación e Inteligencia Artificial
Tipo

info:eu-repo/semantics/conferenceObject