903 resultados para minimally modified low-density lipoprotein


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Oxidative modification of low-density lipoprotein (LDL) plays a key role in the pathogenesis of atherosclerosis. LDL(-) is present in blood plasma of healthy subjects and at higher concentrations in diseases with high cardiovascular risk, such as familial hypercholesterolemia or diabetes. Methods: We developed and validated a sandwich ELISA for LDL(-) in human plasma using two monoclonal antibodies against LDL(-) that do not bind to native LDL, extensively copper-oxidized LDL or malondialdehyde-modified LDL. The characteristics of assay performance, such as limits of detection and quantification, accuracy, inter- and intra-assay precision were evaluated. The linearity, interferences and stability tests were also performed. Results: The calibration range of the assay is 0.625-20.0 mU/L at 1: 2000 sample dilution. ELISA validation showed intra- and inter- assay precision and recovery within the required limits for immunoassays. The limits of detection and quantification were 0.423 mU/L and 0.517 mU/L LDL(-), respectively. The intra- and inter- assay coefficient of variation ranged from 9.5% to 11.5% and from 11.3% to 18.9%, respectively. Recovery of LDL(-) ranged from 92.8% to 105.1%. Conclusions: This ELISA represents a very practical tool for measuring LDL(-) in human blood for widespread research and clinical sample use. Clin Chem Lab Med 2008; 46: 1769-75.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have previously reported the partial purification of a 94- to 97-kDa plasma membrane protein from mouse peritoneal macrophages that binds oxidatively modified low density lipoprotein (OxLDL) and phosphatidylserine-rich liposomes. We have now identified that protein as macrosialin, a previously cloned macrophage-restricted membrane protein in the lysosomal-associated membrane protein family (mouse homologue of human CD68). Early in the course of purification of the 94- to 97-kDa protein, a new OxLDL-binding band at 190-200 kDa appeared and copurified with the 94- to 97-kDa protein. The HPLC pattern of tryptic peptides from this higher molecular mass ligand-binding band closely matched that derived from the 94- to 97-kDa band. Specifically, the same three macrosialin-derived tryptic peptides (9, 9, and 15 residues) were present in the purified 94- to 97-kDa band and in the 190- to 200-kDa band and antisera raised against peptide sequences in macrosialin recognized both bands. An antiserum against macrosialin precipitated most of the 94- to 97-kDa OxLDL-binding material. We conclude that the binding of OxLDL to mouse macrophage membranes is in part attributable to macrosialin. Our previous studies show that OxLDL competes with oxidized red blood cells and with apoptotic thymocytes for binding to mouse peritoneal macrophages. Whether macrosialin plays a role in recognition of OxLDL and oxidatively damaged cells by intact macrophages remains uncertain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To investigate the role of modified low-density lipoproteins (LDL) in the pathogenesis of diabetic retinopathy, we studied the cytotoxicity of normal and mildly modified human LDL to bovine retinal capillary endothelial cells and pericytes in vitro. Pooled LDL was incubated (in phosphate-buffered saline-EDTA, 3 days, 37 degrees C) under 1) nitrogen with additional chelating agents and 2) air, to prepare normal and minimally oxidized LDL, respectively. Similar conditions, but with the addition of 50 mM D-glucose, were used to prepare glycated and glycoxidized LDL. None of the LDL preparations was recognized by the macrophage scavenger receptor, confirming limited modification. Retinal capillary endothelial cells and pericytes were grown to confluence and then exposed for 2 or 3 days to serum-free medium (1% albumin) supplemented with normal or modified LDL (100 mg/l) or to serum-free medium alone. Cytotoxicity was assessed by cell counting (live and total cells) and by cell protein determination. Compared with normal LDL, modified LDL were cytotoxic to both cell types at both time points, causing highly significant decreases in live and total cell counts (P <0.001) (analysis of variance). Reductions in cell protein also were significant for pericytes at day 3 (P = 0.016) and of borderline significance for endothelial cells at day 2 (P = 0.05) and day 3 (P = 0.063). Cytotoxicity increased as follows: normal <glycated <or = minimally oxidized <glycoxidized LDL. We conclude that, in diabetes, mild modification of LDL resulting from separate or combined processes of glycation and oxidation may contribute to chronic retinal capillary injury and thus to the development of diabetic retinopathy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advanced glycation end products (AGEs) are thought to contribute to the abnormal lipoprotein profiles and increased risk of cardiovascular disease of patients with diabetes and renal failure, in part by preventing apolipoprotein B (apoB)-mediated cellular uptake of low density lipoproteins (LDL) by LDL receptors (LDLr). It has been proposed that AGE modification at one site in apoB, almost 1,800 residues from the putative apoB LDLr-binding domain, may be sufficient to induce an apoB conformational change that prevents binding to the LDLr. To further explore this hypothesis, we used 29 anti-human apoB mAbs to identify other potential sites on apoB that may be modified by in vitro advanced glycation of LDL. Glycation of LDL caused a time-dependent decrease in its ability to bind to the LDLr and in the immunoreactivity of six distinct apoB epitopes, including two that flank the apoB LDLr-binding domain. ApoB appears to be modified at multiple sites by these criteria, as the loss of glycation-sensitive epitopes was detected on both native glycated LDL and denatured, delipidated glycated apoB. Moreover, residues directly within the putative apoB LDLr-binding site are not apparently modified in glycated LDL. We propose that the inability of LDL modified by AGEs to bind to the LDLr is caused by modification of residues adjacent to the putative LDLr-binding site that were undetected by previous immunochemical studies. AGE modification either eliminates the direct participation of the residues in LDLr binding or indirectly alters the conformation of the apoB LDLr-binding site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been shown previously that the binding of oxidized low-density lipoprotein (OxLDL) to resident mouse peritoneal macrophages can be inhibited (up to 70%) by the apoprotein B (apoB) isolated from OxLDL, suggesting that macrophage recognition of OxLDL is primarily dependent on its modified protein moiety. However, recent experiments have demonstrated that the lipids isolated from OxLDL and reconstituted into a microemulsion can also strongly inhibit uptake of OxLDL (up to 80%). The present studies show that lipid microemulsions prepared from OxLDL bind to thioglycollate-elicited macrophages at 4°C in a saturable fashion and inhibit the binding of intact OxLDL and also of the apoB from OxLDL. Reciprocally, the binding of the OxLDL-lipid microemulsions was strongly inhibited by intact OxLDL. A conjugate of synthetic 1-palmitoyl 2(5-oxovaleroyl) phosphatidylcholine (an oxidation product of 1-palmitoyl 2-arachidonoyl phosphatidylcholine) with serum albumin, shown previously to inhibit macrophage binding of intact OxLDL, also inhibited the binding of both the apoprotein and the lipid microemulsions prepared from OxLDL. Finally, a monoclonal antibody against oxidized phospholipids, one that inhibits binding of intact OxLDL to macrophages, also inhibited the binding of both the resolubilized apoB and the lipid microemulsions prepared from OxLDL. These studies support the conclusions that: (i) at least some of the macrophage receptors for oxidized LDL can recognize both the lipid and the protein moieties; and (ii) oxidized phospholipids, in the lipid phase of the lipoprotein and/or covalently linked to the apoB of OxLDL, likely play a role in that recognition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have conducted an intervention trial to assess the effects of antioxidants and B-group vitamins on the susceptibility of low-density lipoprotein (LDL) to oxidation. A total of 509 men aged 30-49 from a local workforce were screened for total plasma homocysteine. The 132 selected (homocysteine concentration > or = 8.34 mumol/l) men were randomly assigned, using a factorial design, to one of four groups receiving supplementation with B group vitamins alone (1 mg folic acid, 7.2 mg pyridoxine, 0.02 mg cyanocobalamin), antioxidant vitamins (150 mg ascorbic acid, 67 mg alpha-tocopherol, 9 mg beta-carotene), B vitamins with antioxidant vitamins, or placebo. Intervention was double-blind. A total of 101 men completed the 8-week study. The lag time of LDL isolated ex vivo to oxidation (induced by 2 mumol/l cupric chloride) was increased in the two groups receiving antioxidants whether with (6.88 +/- 1.65 min) or without (8.51 +/- 1.77 min) B-vitamins, compared with placebo (-2.03 +/- 1.50) or B-vitamins alone (-3.34 +/- 1.08) (Mean +/- S.E., P <0.001). Antibodies to malondialdehyde (MDA) modified LDL were also measured, but there were no significant changes in titers of these antibodies in any group of subjects whether receiving antioxidants or not. Contrast analysis showed that there was no interaction between antioxidants and B-group vitamins. This study indicates that while B-group vitamins lower plasma homocysteine they do not have an antioxidant effect. Thus B-group vitamins and antioxidants appear to have separate, independent effects in reducing cardiovascular risk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been suggested that low-density lipoprotein (LDL) modified by glycation may be more susceptible to oxidation and thus, enhance its atherogenicity. Using affinity chromatography, LDL glycated in vivo (G-LDL) and relatively nonglycated. (N-LDL) subfractions can be isolated from the same individual. The extent of and susceptibility to oxidation of N-LDL compared with G-LDL was determined in 15 type 1 diabetic patients. Total LDL was isolated and separated by boronate affinity chromatography into relatively glycated (G-) and nonglycated (N-) subfractions. The extent of glycation, glycoxidation, and lipoxidation, lipid soluble antioxidant content, susceptibility to in vitro oxidation, and nuclear magnetic resonance (NMR)-determined particle size and subclass distribution were determined for each subfraction. Glycation, (fructose-lysine) was higher in G-LDL versus N-LDL, (0.28 +/- 0.08 v 0.13 +/- 0.04 mmol/mol lysine, P <.0001). However, levels of glycoxidation/lipoxidation products and of antioxidants were similar or lower in G-LDL compared with N-LDL and were inversely correlated with fructose-lysine (FL) concentrations in G-LDL, but positively correlated in N-LDL. In vitro LDL (CuCl2) oxidation demonstrated a longer lag time for oxidation of G-LDL than N-LDL (50 +/- 0.16 v 37 +/- 0.15 min, P <.01), but there was no difference in the rate or extent of lipid oxidation, nor in any aspect of protein oxidation. Mean LDL particle size and subclass distribution did not differ between G-LDL and N-LDL. Thus, G-LDL from well-controlled type 1 diabetic patients is not more modified by oxidation, more susceptible to oxidation, or smaller than relatively N-LDL, suggesting alternative factors may contribute to the atherogenicity of LDL from type 1 diabetic patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucose can react with the lysine residues of low-density lipoproteins (LDLs) and convert the lipoprotein to a form with a receptor-mediated uptake by cultured cells that is impaired. However, in contrast to other modified lipoproteins taken up by both murine and human macrophages via the scavenger-receptor pathway that may induce the formation of foam cells, glycosylated LDL is not recognized by murine macrophages, and thus far, it has not been shown to lead to marked intracellular accumulation of cholesterol in human macrophages. This study illustrates that glycosylated LDL incubated with human monocyte-derived macrophages, at a concentration of 100 micrograms LDL/ml medium, stimulates significantly more cholesteryl ester (CE) synthesis than does control LDL (10.65 +/- 1.5 vs. 4.8 +/- 0.13 nmol.mg-1 cell protein.20 h-1; P less than .05). At LDL concentrations similar to those of plasma, the rate of CE synthesis in macrophages incubated with glycosylated LDL is more markedly enhanced than that observed in cells incubated with control LDL (3-fold increase). The marked stimulation of CE synthesis in human macrophages exposed to glycosylated LDL is paralleled by a significant increase in CE accumulation in these cells (P less than .001). The increase in CE synthesis and accumulation seem to be mediated by an increase in the degradation of glycosylated LDL by human macrophages. Glycosylated LDL enters the macrophages and is degraded by the classic LDL-receptor pathway in slightly smaller amounts than control LDL, but its degradation by pathways other than the classic LDL receptor or scavenger receptor is markedly enhanced.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Oxidized lipoproteins and antioxidized low-density lipoprotein (anti-oxLDL) antibodies (Abs) have been detected in plasma in response to blood pressure (BP) elevation, suggesting the participation of the adaptive immune system. Therefore, treatment of hypertension may act on the immune response by decreasing oxidation stimuli. However, this issue has not been addressed. Thus, we have here analyzed anti-oxLDL Abs in untreated (naive) hypertensive patients shortly after initiation of anti hypertensive therapeutic regimens. METHODS Titers of anti-oxLDL Abs were measured in subjects with recently diagnosed hypertension on stage 1 (n = 94), in primary prevention of coronary disease, with no other risk factors, and naive of anti hypertensive medication at entry. Subjects were randomly assigned to receive perindopril, hydrochlorothiazide (HCTZ), or indapamide (INDA) for 12 weeks, with additional perindopril if necessary to achieve BP control. Abs against copper-oxidized LDL were measured by enzyme-linked immunosorbent assay. RESULTS Twelve-week antihypertensive treatment reduced both office-based and 24-h ambulatory BP measurements (P < 0.0005). The decrease in BP was accompanied by reduction in thiobarbituric acid-reactive substances (TBARS) (P < 0.05), increase in anti-oxLDL Ab titers (P < 0.005), and improvement in flow-mediated dilation (FMD) (P < 0.0005), independently of treatment. Although BP was reduced, we observed favorable changes in anti-oxLDL titers and FMD. CONCLUSIONS We observed that anti-oxLDL Ab titers increase after antihypertensive therapy in primary prevention when achieving BP targets. Our results are in agreement with the concept that propensity to oxidation is increased by essential hypertension and anti-oxLDL Abs may be protective and potential biomarkers for the follow-up of hypertension treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low density lipoprotein (LDL) wird in der Arterienwand enzymatisch gespalten. Das Produkt, E-LDL, enthält neben freiem Cholesterol unveresterte Fettsäuren und induziert die Produktion von Interleukin 8 (IL-8) in Endothelzellen. Der Transkriptionsfaktor nuclear factor-kappaB (NF-κB), der das IL-8-Gen normalerweise reguliert, wurde durch E-LDL jedoch nicht aktiviert: Das veränderte Lipoprotein bewirkte im Gegenteil eine Hemmung von NF-κB vor dessen Translokation in den Zellkern. In E-LDL enthaltene freie Fettsäuren waren für die Hemmung verantwortlich. Dagegen aktivierte E-LDL den Transkriptionsfaktor AP-1, wie durch Phosphorylierung von c-jun gezeigt wurde. IL-8 lockt polymorphkernige Granulozyten (PMN) an, die jedoch in der frühen atherosklerotischen Läsion nicht vorkommen. Die vorliegende Arbeit bietet eine mögliche Erklärung für ihre Abwesenheit: PMN zeigten sich wesentlich empfindlicher gegenüber der Toxizität von E-LDL als Makrophagen. Es ist denkbar, daß sie in die Läsion zwar einwandern, nach ihrem raschen Tod dort jedoch nicht mehr detektiert werden können. E-LDL aktivierte PMN, wie durch Superoxidbildung und Peroxidasefreisetzung gezeigt wurde. Sowohl Aktivierung als auch Toxizität wurden von den in E-LDL enthaltenen freien Fettsäuren verursacht, die eine direkte Schädigung der Zellmembran bewirkten. Die E-LDL-bedingte Freisetzung proinflammatorischer Substanzen aus PMN könnte ein Grund dafür sein, daß die Depletion dieser Zellen die Läsionsentwicklung hemmt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To address the question of whether the high levels of oxidative modified low-density lipoproteins (oxLDL) in pregnancy are opposed by an appropriate humoral autoimmune response providing anti-oxLDL autoantibodies in maternal serum of healthy women throughout gestation.