991 resultados para metalorganic vapor-phase epitaxy
Growth of semi-polar GaN on high index silicon (11h) substrates by metal organic vapor phase epitaxy
Resumo:
Magdeburg, Univ., Fak. für Naturwiss., Diss., 2014
Resumo:
GaInP nucleation on Ge(100) often starts by annealing of the Ge(100) substrates under supply of phosphorus precursors. However, the influence on the Ge surface is not well understood. Here, we studied vicinal Ge(100) surfaces annealed under tertiarybutylphosphine (TBP) supply in MOVPE by in situ reflection anisotropy spectroscopy (RAS), X-ray photoelectron spectroscopy (XPS), and low energy electron diffraction (LEED). While XPS reveals a P termination and the presence of carbon on the Ge surface, LEED patterns indicate a disordered surface probably due to by-products of the TBP pyrolysis. However, the TBP annealed Ge(100) surface exhibits a characteristic RA spectrum, which is related to the P termination. RAS allows us to in situ control phosphorus desorption dependent on temperature.
Resumo:
With the final goal of integrating III-V materials on silicon substrates for tandem solar cells, the influence of the Metal-Organic Vapor Phase Epitaxy (MOVPE) environment on the minority carrier properties of silicon wafers has been evaluated. These properties will essentially determine the photovoltaic performance of the bottom cell in a III-V-on-Si tandem solar cell. A comparison of the base minority carrier lifetimes obtained for different thermal processes carried out in a MOVPE reactor on Czochralski silicon wafers has been carried out. An important degradation of minority carrier lifetime during the surface preparation (i.e. H2 anneal) has been observed. Three different mechanisms have been proposed for explaining this behavior: 1) the introduction of extrinsic impurities coming from the reactor; 2) the activation of intrinsic lifetime killing impurities coming from the wafer itself; and finally, 3) the formation of crystal defects, which eventually become recombination centers. The effect of the emitter formation by phosphorus diffusion has also been evaluated. In this sense, it has been reported that lifetime can be recovered during the emitter formation either by the effect of the P on extracting impurities, or by the role of the atomic hydrogen on passivating the defects.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Si(100) and Ge(100) substrates essential for subsequent III-V integration were studied in the hydrogen ambient of a metalorganic vapor phase epitaxy reactor. Reflectance anisotropy spectroscopy (RAS) enabled us to distinguish characteristic configurations of vicinal Si(100) in situ: covered with oxide, cleaned by thermal removing in H2, and terminated with monohydrides when cooling in H2 ambient. RAS measurements during cooling in H2 ambient after the oxide removal process revealed a transition from the clean to the monohydride terminated Si(100) surface dependent on process temperature. For vicinal Ge(100) we observed a characteristic RA spectrum after annealing and cooling in H2 ambient. According to results from X-ray photo electron spectroscopy and Fourier-transform infrared spectroscopy the spectrum corresponds to the monohydride terminated Ge(100) surface.
Resumo:
The present work aims to assess Laser-Induced Plasma Spectrometry (LIPS) as a tool for the characterization of photovoltaic materials. Despite being a well-established technique with applications to many scientific and industrial fields, so far LIPS is little known to the photovoltaic scientific community. The technique allows the rapid characterization of layered samples without sample preparation, in open atmosphere and in real time. In this paper, we assess LIPS ability for the determination of elements that are difficult to analyze by other broadly used techniques, or for producing analytical information from very low-concentration elements. The results of the LIPS characterization of two different samples are presented: 1) a 90 nm, Al-doped ZnO layer deposited on a Si substrate by RF sputtering and 2) a Te-doped GaInP layer grown on GaAs by Metalorganic Vapor Phase Epitaxy. For both cases, the depth profile of the constituent and dopant elements is reported along with details of the experimental setup and the optimization of key parameters. It is remarkable that the longest time of analysis was ∼10 s, what, in conjunction with the other characteristics mentioned, makes of LIPS an appealing technique for rapid screening or quality control whether at the lab or at the production line.
Resumo:
Esta Tesis trata sobre el desarrollo y crecimiento -mediante tecnología MOVPE (del inglés: MetalOrganic Vapor Phase Epitaxy)- de células solares híbridas de semiconductores III-V sobre substratos de silicio. Esta integración pretende ofrecer una alternativa a las células actuales de III-V, que, si bien ostentan el récord de eficiencia en dispositivos fotovoltaicos, su coste es, a día de hoy, demasiado elevado para ser económicamente competitivo frente a las células convencionales de silicio. De este modo, este proyecto trata de conjugar el potencial de alta eficiencia ya demostrado por los semiconductores III-V en arquitecturas de células fotovoltaicas multiunión con el bajo coste, la disponibilidad y la abundancia del silicio. La integración de semiconductores III-V sobre substratos de silicio puede afrontarse a través de diferentes aproximaciones. En esta Tesis se ha optado por el desarrollo de células solares metamórficas de doble unión de GaAsP/Si. Mediante esta técnica, la transición entre los parámetros de red de ambos materiales se consigue por medio de la formación de defectos cristalográficos (mayoritariamente dislocaciones). La idea es confinar estos defectos durante el crecimiento de sucesivas capas graduales en composición para que la superficie final tenga, por un lado, una buena calidad estructural, y por otro, un parámetro de red adecuado. Numerosos grupos de investigación han dirigido sus esfuerzos en los últimos años en desarrollar una estructura similar a la que aquí proponemos. La mayoría de éstos se han centrado en entender los retos asociados al crecimiento de materiales III-V, con el fin de conseguir un material de alta calidad cristalográfica. Sin embargo, prácticamente ninguno de estos grupos ha prestado especial atención al desarrollo y optimización de la célula inferior de silicio, cuyo papel va a ser de gran relevancia en el funcionamiento de la célula completa. De esta forma, y con el fin de completar el trabajo hecho hasta el momento en el desarrollo de células de III-V sobre silicio, la presente Tesis se centra, fundamentalmente, en el diseño y optimización de la célula inferior de silicio, para extraer su máximo potencial. Este trabajo se ha estructurado en seis capítulos, ordenados de acuerdo al desarrollo natural de la célula inferior. Tras un capítulo de introducción al crecimiento de semiconductores III-V sobre Si, en el que se describen las diferentes alternativas para su integración; nos ocupamos de la parte experimental, comenzando con una extensa descripción y caracterización de los substratos de silicio. De este modo, en el Capítulo 2 se analizan con exhaustividad los diferentes tratamientos (tanto químicos como térmicos) que deben seguir éstos para garantizar una superficie óptima sobre la que crecer epitaxialmente el resto de la estructura. Ya centrados en el diseño de la célula inferior, el Capítulo 3 aborda la formación de la unión p-n. En primer lugar se analiza qué configuración de emisor (en términos de dopaje y espesor) es la más adecuada para sacar el máximo rendimiento de la célula inferior. En este primer estudio se compara entre las diferentes alternativas existentes para la creación del emisor, evaluando las ventajas e inconvenientes que cada aproximación ofrece frente al resto. Tras ello, se presenta un modelo teórico capaz de simular el proceso de difusión de fosforo en silicio en un entorno MOVPE por medio del software Silvaco. Mediante este modelo teórico podemos determinar qué condiciones experimentales son necesarias para conseguir un emisor con el diseño seleccionado. Finalmente, estos modelos serán validados y constatados experimentalmente mediante la caracterización por técnicas analíticas (i.e. ECV o SIMS) de uniones p-n con emisores difundidos. Uno de los principales problemas asociados a la formación del emisor por difusión de fósforo, es la degradación superficial del substrato como consecuencia de su exposición a grandes concentraciones de fosfina (fuente de fósforo). En efecto, la rugosidad del silicio debe ser minuciosamente controlada, puesto que éste servirá de base para el posterior crecimiento epitaxial y por tanto debe presentar una superficie prístina para evitar una degradación morfológica y cristalográfica de las capas superiores. En este sentido, el Capítulo 4 incluye un análisis exhaustivo sobre la degradación morfológica de los substratos de silicio durante la formación del emisor. Además, se proponen diferentes alternativas para la recuperación de la superficie con el fin de conseguir rugosidades sub-nanométricas, que no comprometan la calidad del crecimiento epitaxial. Finalmente, a través de desarrollos teóricos, se establecerá una correlación entre la degradación morfológica (observada experimentalmente) con el perfil de difusión del fósforo en el silicio y por tanto, con las características del emisor. Una vez concluida la formación de la unión p-n propiamente dicha, se abordan los problemas relacionados con el crecimiento de la capa de nucleación de GaP. Por un lado, esta capa será la encargada de pasivar la subcélula de silicio, por lo que su crecimiento debe ser regular y homogéneo para que la superficie de silicio quede totalmente pasivada, de tal forma que la velocidad de recombinación superficial en la interfaz GaP/Si sea mínima. Por otro lado, su crecimiento debe ser tal que minimice la aparición de los defectos típicos de una heteroepitaxia de una capa polar sobre un substrato no polar -denominados dominios de antifase-. En el Capítulo 5 se exploran diferentes rutinas de nucleación, dentro del gran abanico de posibilidades existentes, para conseguir una capa de GaP con una buena calidad morfológica y estructural, que será analizada mediante diversas técnicas de caracterización microscópicas. La última parte de esta Tesis está dedicada al estudio de las propiedades fotovoltaicas de la célula inferior. En ella se analiza la evolución de los tiempos de vida de portadores minoritarios de la base durante dos etapas claves en el desarrollo de la estructura Ill-V/Si: la formación de la célula inferior y el crecimiento de las capas III-V. Este estudio se ha llevado a cabo en colaboración con la Universidad de Ohio, que cuentan con una gran experiencia en el crecimiento de materiales III-V sobre silicio. Esta tesis concluye destacando las conclusiones globales del trabajo realizado y proponiendo diversas líneas de trabajo a emprender en el futuro. ABSTRACT This thesis pursues the development and growth of hybrid solar cells -through Metal Organic Vapor Phase Epitaxy (MOVPE)- formed by III-V semiconductors on silicon substrates. This integration aims to provide an alternative to current III-V cells, which, despite hold the efficiency record for photovoltaic devices, their cost is, today, too high to be economically competitive to conventional silicon cells. Accordingly, the target of this project is to link the already demonstrated efficiency potential of III-V semiconductor multijunction solar cell architectures with the low cost and unconstrained availability of silicon substrates. Within the existing alternatives for the integration of III-V semiconductors on silicon substrates, this thesis is based on the metamorphic approach for the development of GaAsP/Si dual-junction solar cells. In this approach, the accommodation of the lattice mismatch is handle through the appearance of crystallographic defects (namely dislocations), which will be confined through the incorporation of a graded buffer layer. The resulting surface will have, on the one hand a good structural quality; and on the other hand the desired lattice parameter. Different research groups have been working in the last years in a structure similar to the one here described, being most of their efforts directed towards the optimization of the heteroepitaxial growth of III-V compounds on Si, with the primary goal of minimizing the appearance of crystal defects. However, none of these groups has paid much attention to the development and optimization of the bottom silicon cell, which, indeed, will play an important role on the overall solar cell performance. In this respect, the idea of this thesis is to complete the work done so far in this field by focusing on the design and optimization of the bottom silicon cell, to harness its efficiency. This work is divided into six chapters, organized according to the natural progress of the bottom cell development. After a brief introduction to the growth of III-V semiconductors on Si substrates, pointing out the different alternatives for their integration; we move to the experimental part, which is initiated by an extensive description and characterization of silicon substrates -the base of the III-V structure-. In this chapter, a comprehensive analysis of the different treatments (chemical and thermal) required for preparing silicon surfaces for subsequent epitaxial growth is presented. Next step on the development of the bottom cell is the formation of the p-n junction itself, which is faced in Chapter 3. Firstly, the optimization of the emitter configuration (in terms of doping and thickness) is handling by analytic models. This study includes a comparison between the different alternatives for the emitter formation, evaluating the advantages and disadvantages of each approach. After the theoretical design of the emitter, it is defined (through the modeling of the P-in-Si diffusion process) a practical parameter space for the experimental implementation of this emitter configuration. The characterization of these emitters through different analytical tools (i.e. ECV or SIMS) will validate and provide experimental support for the theoretical models. A side effect of the formation of the emitter by P diffusion is the roughening of the Si surface. Accordingly, once the p-n junction is formed, it is necessary to ensure that the Si surface is smooth enough and clean for subsequent phases. Indeed, the roughness of the Si must be carefully controlled since it will be the basis for the epitaxial growth. Accordingly, after quantifying (experimentally and by theoretical models) the impact of the phosphorus on the silicon surface morphology, different alternatives for the recovery of the surface are proposed in order to achieve a sub-nanometer roughness which does not endanger the quality of the incoming III-V layers. Moving a step further in the development of the Ill-V/Si structure implies to address the challenges associated to the GaP on Si nucleation. On the one hand, this layer will provide surface passivation to the emitter. In this sense, the growth of the III-V layer must be homogeneous and continuous so the Si emitter gets fully passivated, providing a minimal surface recombination velocity at the interface. On the other hand, the growth should be such that the appearance of typical defects related to the growth of a polar layer on a non-polar substrate is minimized. Chapter 5 includes an exhaustive study of the GaP on Si nucleation process, exploring different nucleation routines for achieving a high morphological and structural quality, which will be characterized by means of different microscopy techniques. Finally, an extensive study of the photovoltaic properties of the bottom cell and its evolution during key phases in the fabrication of a MOCVD-grown III-V-on-Si epitaxial structure (i.e. the formation of the bottom cell; and the growth of III-V layers) will be presented in the last part of this thesis. This study was conducted in collaboration with The Ohio State University, who has extensive experience in the growth of III-V materials on silicon. This thesis concludes by highlighting the overall conclusions of the presented work and proposing different lines of work to be undertaken in the future.
Resumo:
Poly(tetrafluoroethylene-co-perfluoropropyI vinyl ether), PFA, was grafted with styrene from the vapor phase using a simultaneous radiation grafting method. The graft yields were measured as a function of the dose and dose rate and were found to be initially linearly dependent on the dose and independent of the dose rate up to dose rates of similar to3 kGy/h. However, at a dose rate of 6.2 kGy/h, the slope of the yield-grafting time plot decreased. Raman depth profiles of the grafts showed that the polystyrene concentrations were greatest near the surface of the grafted samples and decreased with depth. The maximum penetration depth of the graft depended on the radiation dose for a fixed dose rate. Fmoc-Rink loading tests showed that the grafts displayed superior loading compared to grafts prepared from bulk styrene or from styrene solutions other than methanol.
Resumo:
Two fluorescent molecular receptor based conjugated polymers were used in the detection of a nitroaliphatic liquid explosive (nitromethane) and an explosive taggant (2,3-dimethyl-2,3-dinitrobutane) in the vapor phase. Results have shown that thin films of both polymers display remarkably high sensitivity and selectivity toward these analytes. Very fast, reproducible, and reversible responses were found. The unique behavior of these supramolecular host systems is ascribed to cooperativity effects developed between the calix[4] arene hosts and the phenylene ethynylene-carbazolylene main chains. The calix[4]-arene hosts create a plethora of host-guest binding sites along the polymer backbone, either in their bowl-shaped cavities or between the outer walls of the cavity, to direct guests to the area of the transduction centers (main chain) at which favorable photoinduced electron transfer to the guest molecules occurs and leads to the observed fluorescence quenching. The high tridimensional porous nature of the polymers imparted by the bis-calixarene moieties concomitantly allows fast diffusion of guest molecules into the polymer thin films.
Resumo:
In the present study the effect of relative humidity (RH) during spin-coating process on the structural characteristics of cellulose acetate (CA), cellulose acetate phthalate (C-A-P), cellulose acetate butyrate (CAB) and carboxymethyl cellulose acetate butyrate (CMCAB) films was investigated by means of atomic force microscopy (AFM), ellipsometry and contact angle measurements. All polymer solutions were prepared in tetrahydrofuran (THF), which is a good solvent for all cellulose esters, and used for spin-coating at RH of (35 +/- A 5)%, (55 +/- A 5)% or (75 +/- A 5)%. The structural features were correlated with the molecular characteristics of each cellulose ester and with the balance between surface energies of water and THF and interface energy between water and THF. CA, CAB, CMCAB and C-A-P films spin-coated at RH of (55 +/- A 5)% were exposed to THF vapor during 3, 6, 9, 60 and 720 min. The structural changes on the cellulose esters films due to THF vapor exposition were monitored by means of AFM and ellipsometry. THF vapor enabled the mobility of cellulose esters chains, causing considerable changes in the film morphology. In the case of CA films, which are thermodynamically unstable, dewetting was observed after 6 min exposure to THF vapor. On the other hand, porous structures observed for C-A-P, CAB and CMCAB turned smooth and homogeneous after only 3 min exposure to THF vapor.
Resumo:
The Sm, Eu, and Yb tri- and dichlorides were investigated by Knudsen effusion mass spectrometry. It was found out by the analysis of mass spectra and ionization efficiency curves that the vapor composition is complex due to the partial high temperature decomposition/disproportionation of the samples. Up to five vapor species were identified for both LnCl3 (LnCl3, LnCl2, Ln2Cl4, Ln2Cl5, and Ln2Cl6) and LnCl2 (LnCl3, LnCl2, LnCl, Ln, and Ln2Cl4). The quantitative evaluation of vapor composition was made. It indicates that the disproportionation of SmCl2 and EuCl2 is negligible in the temperature range studied whereas that of YbCl2 and the decomposition of SmCl3 and YbCl3 cannot be neglected.
Resumo:
In this work we present results of zinc diffusion in GaAs using the liquid phase epitaxy technique from liquid solutions of Ga‐As‐Zn and Ga‐As‐Al‐Zn. Using silicon‐doped n‐GaAs substrates, working at a diffusion temperature of 850 °C, and introducing a dopant concentration ranging 1018–1019 cm−3, the most important findings regarding the diffusion properties are as follows: (a) zinc concentration in the solid depends on the square root of zinc atomic fraction in the liquid; (b) the diffusion is dominated by the interstitial‐substitutional process; (c) the diffusivity D varies as about C3 in the form D=2.9×10−67C3.05; (d) aluminum plays the role of the catalyst of the diffusion process, if it is introduced in the liquid solution, since it is found that D varies as (γAsXlAs)−1; (e) the zinc interstitial is mainly doubly ionized (Zn++i); (f) the zinc diffusion coefficient in Al0.85 Ga0.15 As is about four times greater than in GaAs; (g) by means of all these results, it is possible to control zinc diffusion processes in order to obtain optimized depth junctions and doping levels in semiconductor device fabrication.
Resumo:
Microstructural and optical properties of InAs-inserted and reference single GaAsN/GaAs quantum-well (QW) structures grown by metalorganic chemical vapor deposition were investigated using cross-sectional transmission electron microscopy and photoluminescence (PL). Significant enhancement of PL intensity and a blueshift of PL emission were observed from the InAs-inserted GaAsN/GaAs QW structure, compared with the single GaAsN/GaAs QW structure. Strain compensation and In-induced reduction of N incorporation are suggested to be two major factors affecting the optical properties. (C) 2004 American Institute of Physics.
Resumo:
The infra-red detector material cadmium mercury telluride can be grown by the technique of Metal Organic Vapour Phase Epitaxy using simple alkyl telluride compounds as the source of tellurium. New tellurium precursors are required in order to overcome handling and toxicity problems and to reduce the growth temperature in preparing the material. A range of diaryltellurium(IV) dicarboxylates and some 2-(2'-pyridyl)phenyl-tellurium(II) and tellurium(IV) monocarboxylates have been synthesised and characterised by infra-red, 13C N.M.R. and mass spectroscopy. Infra-red spectroscopy has been used to determine the mode of bonding of the carboxylate ligand to tellurium. Synthetic methods have been devised for the preparation of diorganotritellurides (R2Te3) and mixed diorganotetrachalcogenides (RTeSeSeTeR). A mechanism for the formation of the tritellurides based on aerobic conditions is proposed. The reaction of ArTe- with (ClCH2CH2)3N leads to tripod-like multidentate ligands (ArTeCH2CH2)3N which form complexes with the ions Hg(II), Cd(II), Cu(I), Pt(II) and Pd(II). Synthetic routes to aryltelluroalkylamines and arylselenoalkylamines are also reported. The crystal structure of 2-(2'-pyridyl)phenyltellurium(II) bromide has been solved in which there are six molecules present within the unit cell. There are no close intermolecular Te---Te interactions and the molecules are stabilised by short Te---N intramolecular contacts. The crystal structure of 2-(2'-pyridyl)phenylselenium(II)-tribromomercurate(II) is also presented. A study of the Raman vibrational spectra of some tellurated azobenzenes and 2-phenylpyridines shows spectra of remarkably far superior quality to those obtained using infra-red spectroscopy.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT