957 resultados para metallic palladium
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The pyrazole ligand 3,5-dimethyl-4-iodopyrazole (HdmIPz) has been used to obtain a series of palladium(II) complexes (1-4) of the type [PdX(2)(HdmIPz)(2)] {X = Cl(-) (1); Br(-) (2); I(-) (3); SCN(-) (4)}. All compounds have been isolated, purified, and characterized by means of elemental analysis, IR spectroscopy, (1)H and (13)C{(1)H}-NMR experiments, differential thermal analysis (DTA), and thermogravimetry (TG). The TG/DTA curves showed that the compounds released ligands in the temperature range 137-605 A degrees C, yielding metallic palladium as final residue. The complexes and the ligand together with cisplatin have been tested in vitro by MTT assay for their cytotoxicity against two murine cancer cell lines: mammary adenocarcinoma (LM3) and lung adenocarcinoma (LP07).
Resumo:
The synthesis and thermal behavior of the new [Pd(fum)(bipy)] (n) center dot 2nH(2)O (1), [Pd(fum)(bpe)] (n) center dot nH(2)O (2) and [Pd(fum)(pz)] (n) center dot 3nH(2)O (3) {bipy = 4,4'-bipyridine, bpe = 1,2-bis(4-pyridyl)ethene and pz = pyrazine} fumarate complexes are described in this work as well their characterization by IR and (13)C CPMAS NMR spectroscopies. TG curves showed that the compounds released organic ligands and lattice water molecules in the temperature range of 46-491 A degrees C. In all the cases, metallic palladium was identified as the final residue.
Resumo:
The thermal behavior of simple and mixed pyrazolyl complexes [PdCl2(phmPz)(2)] (1),[Pd(N-3)(2)(phmPz)(2)] (2), [Pd(SCN)(2)(phmPz)(2)] (3), and [Pd(N-3)(SCN)(phmPz)(2)] (4) (phmPz: 1-phenyl-3-methylpyrazole) has been investigated by means of thermogravimetry (TG) and differential thermal analysis (DTA). From the initial decomposition temperatures, the thermal stability of the complexes can be ordered in the sequence: 4 < 2 < 3 < 1. The final products of the thermal decompositions were characterized as metallic palladium (Pd-0). (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The cyanate-bridged cyclopalladated compound [Pd(N,C-dmba)(mu-NCO)](2) (1) (dmba = PhCH2NMe2) reacts in CH2Cl2 with 2,3-lutidine (2,3- lut), 3,4-lutidine (3,4-lut), 2,2'-bipyridine (2,2'-bipy) and 4,4'-bipyridine (4,4'-bipy), to give [Pd(N, C-dmba)(NCO)(2,3-lut)] (2), [Pd(N,C-dmba)(NCO)(3,4-lut)] (3), [{Pd(N,C-dmba)(NCO)}(2)(mu-2,2'-bipy)] .CH2Cl2 (4) and [{Pd(N,C-dmba)(NCO)}(2)(mu-4,4'-bipy)] . CH2Cl2 (5), respectively. The compounds were characterized by elemental analysis, i.r. and n. m. r. spectroscopy and also by t.g.a. The i.r. spectra of (2 - 5) display typical bands of monodentate N-bonded cyanate groups, whereas the n. m. r. data of (4) are consistent with the presence of a bridging 2,2'-bipyridine ligand. Complex (4) decomposes slowly in acetone. One of the products formed, [Pd(H2CCOMe) Cl(2,2'-bipy)] (6), was characterized by X-ray diffraction. As inferred from the t.g.a., the thermal stability decreases in the order: [{Pd(N,C-dmba)(NCO)}(2) (mu-4,4'-bipy)]. CH2Cl2 (5) > [Pd(N,C-dmba)(2,3-lut)( NCO)] (2) = [Pd(N, C-dmba)(3,4-lut)(NCO)] (3) > [{Pd(N,C-dmba)(NCO)}(2)(mu- 2,2'-bipy)] .CH2Cl2 (4). According to thermal analysis and X-ray diffraction patterns compounds (2 - 3) decompose into metallic palladium Pd(0), whereas (4 - 5) decompose with the formation of PdO. The X-ray crystal and molecular structure of [Pd(N, C-dmba)( NCO)(2,3-lut)] (2) was determined. The lutidine unit is perpendicular to the coordination plane.
Resumo:
The compounds [PdCl(2)L(2)] and [PdL(4)] (L=PPh(3), AsPh(3), SbPh(3)) were studied by thermogravimetric and differential thermal analyses in air. The residues of thermal decomposition consist of metallic palladium, except in the case of the complexes containing SbPh(3), when the residues are palladium and antimony mixtures in appropriate proportions with respect to the stoichiometry of the related complexes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Thermal behavior of pyrazolyl complexes [PdCl2(HPz)2] (1), [PdCl2(HdmPz)2] (2), [Pd(SCN)2(HPz) 2] (3), [Pd(SCN)2(HdmPz)2] (4), [Pd(N 3)2(HdmPz)2] (5), [Pd(PzNHCO)2] (6) and [Pd(dmPzNHCO)2] (7) (HPz=pyrazole, HdmPz=3,5-dimethylpyrazole) has been studied by TG and DTA. In general, the thermal stability of [PdX 2(HL)2] (HL=HPz, HdmPz) compounds varies in the following order: HdmPz>HPz as well, according to the trends X=Cl ->SOT->NNN-. Except for 5, the [PdX 2(HL)2] complexes showed higher thermal stability than the 6 and 7 chelates. No stable intermediates were isolated during the thermal decompositions because of the overlapping degradation processes. The final products of the thermal decompositions were identified as metallic palladium by X-ray powder diffraction. © 2005 Akadémiai Kiadó, Budapest.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pd nanoparticles have been synthesized over carbon nanotubes (CNT) and graphite oxide (GO) by reduction with ethylene glycol and by conventional impregnation method. The catalysts were tested on the chemoselective hydrogenation of p-chloronitrobenzene and the effect of the synthesis method and surface chemistry on their catalytic performance was evaluated. The catalysts were characterized by N2 adsorption/desorption isotherms at 77 K, TEM, powder X-ray diffraction, thermogravimetry, infrared and X-ray photoelectron spectroscopy and ICP-OES. It was observed that the synthesis of Pd nanoparticles employing ethylene glycol resulted in metallic palladium particles of smaller size compared to those prepared by the impregnation method and similar for both supports. The presence of oxygen groups on the support surface favored the activity and diminished the selectivity. It seems that ethylene glycol reacted with the surface groups of GO, this favoring the selectivity. The activity was higher over the CNT-based catalysts and both catalysts prepared by reduction in ethylene glycol were quite stable upon recycling.
Resumo:
This paper presents a simple, fast and sensitive method to determine chromic oxide (used as a biological marker of fish feed) in samples of fish feces by GFAAS through the direct introduction of slurries of the samples into the spectrometer's graphite tube. The standard samples of feces and of fish feed containing 0.10-1.00 mg kg(-1) of Cr2O3 were pre-frozen for I min in liquid nitrogen and then ground a cryogenic mill for 2 min, which reduced the samples' grain size to less than 60 mu m. The standard slurries were prepared by mixing 20 mg of standard samples of fish feed or feces with I mL of a solution containing 0.05% (v/v) of Triton X-100 and 0.50% (v/v) of suprapure HNO3 directly in the spectrometer's automatic sampling glass. The final concentrations of Cr2O3 present in the standard slurries were 2, 4, 8, 16 and 20 mu g L-1. After sonicating the mixture for 20s, 10 mu L of standard slurries were injected into the graphite tube, whose internal wall was lined with a metallic palladium film that acted as a permanent chemical modifier. The limits of detection (LOD) and quantification (LOQ) calculated for 20 readings of the blank of the standard slurries (2%, m/v of feces or feed devoid of minerals) were 0.81 and 2.70 mu g L-1 of Cr2O3 for the standard feces slurries, 0.84 and 2.83 mu g L-1 of Cr2O3 for the standard feed slurries. The proposed method was applied in studies of nutrient digestibility of different fish feeds and its results proved compatible with the results obtained from samples pre-mineralized by acid digestion. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
This work describes the synthesis, characterization, and the thermal behavior investigation of four palladium(II) complexes with general formulae [PdX(2)(mba)(2)], in which mba = N-methylbenzylamine and X = OAc(-) (1), Cl(-) (2), Br(-) (3) or I(-) (4). The complexes were characterized by elemental analysis, infrared vibrational spectroscopy, and (1)H nuclear magnetic resonance. The stoichiometry of the complexes was established by means of elemental analysis and thermogravimetry (TG). TG/DTA curves showed that the thermodecomposition of the four complexes occurred in 3-4 steps, leading to metallic palladium as final residue. The palladium content found in all curves was in agreement with the mass percentages calculated for the complexes. The following thermal stability sequence was found: 3 > 2 > 4 > 1. The geometry optimization of 1, 2, 3, and 4, calculated using the DFT/B3LYP method, yielded a slightly distorted square planar environment around the Pd(II) ion made by two anionic groups and two nitrogen atoms from the mba ligand (N1 and N2), in a trans-relationship.
Resumo:
The synthesis, characterization and thermal analysis of the novel cyclometallated compounds [Pd-2(dmba)(2)Cl-2(mu-bpe)] (1), [Pd-2(dmba)(2)(N-3)(2)(mu-bpe)] (2), [Pd-2(dmba)(2)(NCO)(2)(mu-bpe)] (3), [Pd-2(dmba)(2)(SCN)(2)(mu-bpe)] (4), [Pd-2(dmba)(2)(NO3)(2)(mu-bpe)] (5) (bpe=trans-1,2-bis(4-pyridyl)ethylene; dmba=N,N-dimethylbenzylamine) are described. The thermal stability of [Pd-2(dmba)(2)X-2(mu-bpe)] complexes varies in the sequence 1 > 4 > 3 > 2 > 5. The final residues of the thermal decompositions were characterized as metallic palladium by X-ray powder diffraction.
Resumo:
Four new mononuclear Pd(II) complexes of the type [PdX2(tdmPz)] {X = Cl- (1); Br- (2); I- (3); SCN- (4); tdmPz = 1-thiocarbamoyl-3,5-dimethylpyrazole} have been synthesized and characterized by elemental analysis, IR spectroscopy, H-1 and C-13{H-1}-NMR experiments. The thermal behavior of the complexes 1-4 has been investigated by means of thermogravimetry (TG) and differential thermal analysis (DTA). From the initial decomposition temperatures, the thermal stability of the complexes can be ordered in the sequence: 3 < 4 a parts per thousand 2 < 1. The final products of the thermal decompositions were characterized as metallic palladium by X-ray powder diffraction.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)