994 resultados para metabolic types


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cell proliferation is a critical and frequently studied feature of molecular biology in cancer research. Therefore, various assays are available using different strategies to measure cell proliferation. Metabolic assays such as AlamarBlue, WST-1, and MTT, which were originally developed to determine cell toxicity, are being used to assess cell numbers. Additionally, proliferative activity can be determined by quantification of DNA content using fluorophores, such as CyQuant and PicoGreen. Referring to data published in high ranking cancer journals, 945 publications applied these assays over the past 14 years to examine the proliferative behaviour of diverse cell types. Within this study, mainly metabolic assays were used to quantify changes in cell growth yet these assays may not accurately reflect cellular proliferation rates due to a miscorrelation of metabolic activity and cell number. Testing this hypothesis, we compared metabolic activity of different cell types, human cancer cells and primary cells, over a time period of 4 days using AlamarBlue and fluorometric assays CyQuant and PicoGreen to determine their DNA content. Our results show certain discrepancies in terms of over-estimation of cell proliferation with respect to the metabolic assay in comparison to DNA binding fluorophores.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacterial siderophores are a group of chemically diverse, virulence-associated secondary metabolites whose expression exerts metabolic costs. A combined bacterial genetic and metabolomic approach revealed differential metabolomic impacts associated with biosynthesis of different siderophore structural families. Despite myriad genetic differences, the metabolome of a cheater mutant lacking a single set of siderophore biosynthetic genes more closely approximate that of a nonpathogenic K12 strain than its isogenic, uropathogen parent strain. Siderophore types associated with greater metabolomic perturbations are less common among human isolates, suggesting that metabolic costs influence success in a human population. Although different siderophores share a common iron acquisition function, our analysis shows how a metabolomic approach can distinguish their relative metabolic impacts in E.coli.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIMS: To investigate the relationship of alcohol consumption with the metabolic syndrome and diabetes in a population-based study with high mean alcohol consumption. Few data exist on these conditions in high-risk drinkers. METHODS: In 6172 adults aged 35-75 years, alcohol consumption was categorized as 0, 1-6, 7-13, 14-20, 21-27, 28-34 and ≥ 35 drinks/week or as non-drinkers (0), low-risk (1-13), medium-to-high-risk (14-34) and very-high-risk (≥ 35) drinkers. Alcohol consumption was objectively confirmed by biochemical tests. In multivariate analysis, we assessed the relationship of alcohol consumption with adjusted prevalence of the metabolic syndrome, diabetes and insulin resistance, determined with the homeostasis model assessment of insulin resistance (HOMA-IR). RESULTS: Seventy-three per cent of participants consumed alcohol, 16% were medium-to-high-risk drinkers and 2% very-high-risk drinkers. In multivariate analysis, the prevalence of the metabolic syndrome, diabetes and mean HOMA-IR decreased with low-risk drinking and increased with high-risk drinking. Adjusted prevalence of the metabolic syndrome was 24% in non-drinkers, 19% in low-risk (P<0.001 vs. non-drinkers), 20% in medium-to-high-risk and 29% in very-high-risk drinkers (P=0.005 vs. low-risk). Adjusted prevalence of diabetes was 6.0% in non-drinkers, 3.6% in low-risk (P<0.001 vs. non-drinkers), 3.8% in medium-to-high-risk and 6.7% in very-high-risk drinkers (P=0.046 vs. low-risk). Adjusted HOMA-IR was 2.47 in non-drinkers, 2.14 in low-risk (P<0.001 vs. non-drinkers), 2.27 in medium-to-high-risk and 2.53 in very-high-risk drinkers (P=0.04 vs. low-risk). These relationships did not differ according to beverage types. CONCLUSIONS: Alcohol has a U-shaped relationship with the metabolic syndrome, diabetes and HOMA-IR, without differences between beverage types.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dietary derived phytochemicals have been proposed to act as beneficial agents in a multitude of disease states, including cancer, cardiovascular disease and neurodegenerative disorders. However, the biological effect of such compounds will ultimately depend on the cellular effects of their circulating metabolites. The focus of this review is to examine the current knowledge regarding the biotransformation of different classes of phytochemicals in humans. Notably, the data compiled here represents only that obtained from human studies following consumption of phytochemicals in meals or in a dose comparable with normal dietary intake. In addition, we have considered only those studies where more powerful analytical techniques have been used in the characterisation of metabolic forms. We provide clear information regarding the types of metabolites that are likely to be present in humans following oral ingestion. Ultimately this will help identify metabolic forms that should represent the focus of future cellular mechanistic investigations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Phenotype MicroArray (TM) (PM) technology was used to study the metabolic characteristics of 29 Salmonella strains belonging to seven serotypes of S. enterica spp. enterica. Strains of serotypes Typhimurium (six strains among definite phage types DTs 1, 40 and 104) and Agona (two strains) were tested for 949 substrates, Enteritidis (six strains of phage type PT1), Give, Hvittingfoss, Infantis and Newport strains (two of each) were tested for 190 substrates and seven other Agona strains for 95 substrates. The strains represented 18 genotypes in pulsed-field gel electrophoresis (PFGE). Among 949 substrates, 18 were identified that could be used to differentiate between the strains of those seven serotypes or within a single serotype. Unique metabolic differences between the Finnish endemic Typhimurium DT1 and Agona strains were detected, for example, in the metabolism of d-tagatose, d-galactonic acid gamma-lactone and l-proline as a carbon source. Thus, the PM technique is a useful tool for identifying potential differential markers on a metabolic basis that could be used for epidemiological surveillance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genetic variants of Period 2 (PER2), a circadian clock gene, have been linked to metabolic syndrome (MetS). However, it is still unknown whether these genetic variants interact with the various types of plasma fatty acids. This study investigated whether common single nucleotide polymorphisms (SNPs) in the PER2 locus (rs934945 and rs2304672) interact with various classes of plasma fatty acids to modulate plasma lipid metabolism in 381 participants with MetS in the European LIPGENE study. Interestingly, the rs2304672 SNP interacted with plasma total SFA concentrations to affect fasting plasma TG, TG-rich lipoprotein (TRL-TG), total cholesterol, apoC-II, apoB, and apoB-48 concentrations (P-interaction < 0.001–0.046). Carriers of the minor allele (GC+GG) with the highest SFA concentration (>median) had a higher plasma TG concentration (P = 0.001) and higher TRL-TG (P < 0.001) than the CC genotype. In addition, participants carrying the minor G allele for rs2304672 SNP and with a higher SFA concentration (>median) had higher plasma concentrations of apo C-II (P < 0.001), apo C-III (P = 0.009), and apoB-48 (P = 0.028) compared with the homozygotes for the major allele (CC). In summary, the rs2304672 polymorphism in the PER2 gene locus may influence lipid metabolism by interacting with the plasma total SFA concentration in participants with MetS. The understanding of these gene-nutrient interactions could help to provide a better knowledge of the pathogenesis in MetS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the effects of individual organisms on material cycles and energy fluxes within ecosystems is central to predicting the impacts of human-caused changes on climate, land use, and biodiversity. Here we present a theory that integrates metabolic (organism-based bottom-up) and systems (ecosystem-based top-down) approaches to characterize how the metabolism of individuals affects the flows and stores of materials and energy in ecosystems. The theory predicts how the average residence time of carbon molecules, total system throughflow (TST), and amount of recycling vary with the body size and temperature of the organisms and with trophic organization. We evaluate the theory by comparing theoretical predictions with outputs of numerical models designed to simulate diverse ecosystem types and with empirical data for real ecosystems. Although residence times within different ecosystems vary by orders of magnitude—from weeks in warm pelagic oceans with minute phytoplankton producers to centuries in cold forests with large tree producers—as predicted, all ecosystems fall along a single line: residence time increases linearly with slope = 1.0 with the ratio of whole-ecosystem biomass to primary productivity (B/P). TST was affected predominantly by primary productivity and recycling by the transfer of energy from microbial decomposers to animal consumers. The theory provides a robust basis for estimating the flux and storage of energy, carbon, and other materials in terrestrial, marine, and freshwater ecosystems and for quantifying the roles of different kinds of organisms and environments at scales from local ecosystems to the biosphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uncoupling protein-3 (UCP3) is a mitochondrial inner-membrane protein abundantly expressed in rodent and human skeletal muscle which may be involved in energy dissipation. Many studies have been performed on the metabolic regulation of UCP3 mRNA level, but little is known about UCP3 expression at the protein level. Two populations of mitochondria have been described in skeletal muscle, subsarcolemmal (SS) and intermyofibrillar (IMF), which differ in their intracellular localization and possibly also their metabolic role. To examine if UCP3 is differentially expressed in these two populations and in different mouse muscle types, we developed a new protocol for isolation of SS and IMF mitochondria and carefully validated a new UCP3 antibody. The data show that the density of UCP3 is higher in the mitochondria of glycolytic muscles (tibialis anterior and gastrocnemius) than in those of oxidative muscle (soleus). They also show that SS mitochondria contain more UCP3 per mg of protein than IMF mitochondria. Taken together, these results suggest that oxidative muscle and the mitochondria most closely associated with myofibrils are most efficient at producing ATP. We then determined the effect of a 24-h fast, which greatly increases UCP3 mRNA (16.4-fold) in muscle, on UCP3 protein expression in gastrocnemius mitochondria. We found that fasting moderately increases (1.5-fold) or does not change UCP3 protein in gastrocnemius SS or IMF mitochondria, respectively. These results show that modulation of UCP3 expression at the mRNA level does not necessarily result in similar changes at the protein level and indicate that UCP3 density in SS and IMF mitochondria can be differently affected by metabolic changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The muscles can perform the same function in a specific segment (muscles of fast and slow contraction), and at the same time be antagonistic in relation to muscular action (flexors or extensors). The present research aimed to study the morphology, frequency and metabolism of fiber types and the contractile characteristics of extensor and flexors muscles of rabbit. We studied muscles anterior tibialis (AT), flexor digitorum supeficialis (FDS), extensor digitorum longus (EDL) and posterior tibialis (PT). The muscles were submitted to the techniques HE, NADH-TR and myofibrillar ATPase. In EDL and PT extensor muscles, the frequencies of red (SO + FOG) and white fibers (FG) were 68.77% and 31.23% versus 58.87% and 41.13%, respectively. In the AT and FDS flexor muscles, these frequencies were 75.14% and 24.86% versus 73.89% and 26.11%, respectively. In extensor muscles, the percentage of slow contraction fibers was 8.05% in EDL and 9.74% in PT, and in fast contraction, 91.95% in EDL and 90.26% in PT. In flexors, the slow contraction frequencies were 12.35% in AT and 8.17% in FDS, and in fast contraction, 87.65% and 91.83%, respectively. Skeletal muscles with antagonistic muscular actions (flexors and extensors) the morphological, contractile and metabolic characteristics are identical.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUÇÃO: O excesso de peso na população aumentou de forma significante nas últimas décadas e as bebidas gasosas tornaram-se um fator ambiental importante no comportamento alimentar das pessoas, sendo os EUA, México e Brasil, nesta ordem, os três maiores paises produtores e consumidores de refrigerantes. OBJETIVO: Investigar os efeitos da dilatação gástrica em ratos submetidos a ingestão de água gaseificada, veículo uniforme para todos os refrigerantes, sobre parâmetros metabólicos da função hepática. MÉTODOS: Foram constituídos dois grupos de 15 ratos acompanhados por 15 semanas. Ao Grupo-I, foram oferecidos 200 g/dia de ração ad libitum e 100 ml de água não gaseificada em 3 períodos diários, ao Grupo-II, foram oferecidos 200 g/dia de ração ad libitum e 100 ml de água gaseificada em 3 períodos diários; em cada grupo,foram calculados a média (x) e o desvio padrão (s); para todos os atributos estudados foi utilizado o método estatístico de teste t pareado, comparando-se GI com GII, testando-se o efeito dos tipos de água. RESULTADOS: Os resultados identificaram que os animais que foram submetidos ao tratamento com água gaseificada (Grupo-II), apresentaram um aumento de transaminase glutâmica pirúvica (TGP) e fosfatase alcalina p<0,01), tendência de aumento da transaminase glutâmica oxalacética (TGO) (0,10>p>0,05) e aumento da área gástrica com alterações morfológicas macroscópicas como o desaparecimento do pregueamento mucoso característico. CONCLUSÃO: A água gaseificada favoreceu o aumento da área gástrica com conseqüente desaparecimento macroscópico do pregueamento mucoso do órgão, que ocasionou alterações metabólicas da função hepática.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fipronil is a neurotoxic insecticide that inhibits the gamma-aminobutyric acid receptor and can affect gustative perception, olfactory learning, and motor activity of the honeybee Apis mellifera. This study determined the lethal dose (LD50) and the lethal concentration (LC50) for Africanized honeybee and evaluated the toxicity of a sublethal dose of fipronil on neuron metabolic activity by way of histochemical analysis using cytochrome oxidase detection in brains from worker bees of different ages. In addition, the present study investigated the recovery mechanism by discontinuing the oral exposure to fipronil. The results showed that mushroom bodies of aged Africanized honeybees are affected by fipronil, which causes changes in metabolism by increasing the respiratory activity of mitochondria. In antennal lobes, the sublethal dose of fipronil did not cause an increase in metabolic activity. The recovery experiments showed that discontinued exposure to a diet contaminated with fipronil did not lead to recovery of neural activity. Our results show that even at very low concentrations, fipronil is harmful to honeybees and can induce several types of injuries to honeybee physiology. © 2012 Springer Science+Business Media New York.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: In pediatric populations, the use of resting heart rate as a health index remains unclear, mainly in epidemiological settings. The aims of this study were to analyze the impact of resting heart rate on screening dyslipidemia and high blood glucose and also to identify its significance in pediatric populations.Methods: The sample was composed of 971 randomly selected adolescents aged 11 to 17 years (410 boys and 561 girls). Resting heart rate was measured with oscillometric devices using two types of cuffs according to the arm circumference. Biochemical parameters triglycerides, total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol and glucose were measured. Body fatness, sleep, smoking, alcohol consumption and cardiorespiratory fitness were analyzed.Results: Resting heart rate was positively related to higher sleep quality (β = 0.005, p = 0.039) and negatively related to cardiorespiratory fitness (β = -0.207, p = 0.001). The receiver operating characteristic curve indicated significant potential for resting heart rate in the screening of adolescents at increased values of fasting glucose (area under curve = 0.611 ± 0.039 [0.534 - 0.688]) and triglycerides (area under curve = 0.618 ± 0.044 [0.531 - 0.705]).Conclusion: High resting heart rate constitutes a significant and independent risk related to dyslipidemia and high blood glucose in pediatric populations. Sleep and cardiorespiratory fitness are two important determinants of the resting heart rate. © 2013 Fernandes et al.; licensee BioMed Central Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protease inhibitors (PIs), part of HAART (Highly Active Antiretroviral Therap) are selective, competitive inhibitors of protease, a crucial enzyme to viral maturation, infection and replication. A lipodystrophic syndrome has been reported in individuals treated with HAART, and associated to hyperglycemia, hypercholesterolemia, hypertrigliceridemia, hyperlipidemia, hypertension and hypreinsulinemia. The HAART-associated metabolic abnormalities were first associated with protease inhibitors, Ritonavir mostly, but the mechamisns that underlie these metabolic alterations are to date, not completely understood. Since Pis are candidate to be the drug of choice for other diseases treatment, such as the Hepatitis C, malaria and some types of cancer, it seems to be important to clarify the metabolic alterations associated to PIs. Wistar rats were treated twice a week with 30mg/kg Ritonavir for 4 and 8 weeks. Total cholesterol, HDL, LDL, VLDL, triglycerides and glycemic levels were measured by the end of each period of time selected. To avoid confunding effects of food intake, the animals were fasted 16 hours before. Our results showed rapid increase in serum triglycerides, total cholesterol, LDL-C and glycemic levels. No significant differences were observed for HDL-C or VLDL serum levels. Our study addresses the importance to observe the possible family history of dyslipidemia or diabetes, and control any other cardiovascular and diabetes risk factors when using protease inhibitors

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aerobic exercise training (ET) has been established as an important non-pharmacological treatment of hypertension, since it decreases blood pressure. Studies show that the skeletal muscle abnormalities in hypertension are directly associated with capillary rarefaction, higher percentage of fast-twitch fibers (type II) with glycolytic metabolism predominance and increased muscular fatigue. However, little is known about these parameters in hypertension induced by ET. We hypothesized that ET corrects capillary rarefaction, potentially contributing to the restoration of the proportion of muscle fiber types and metabolic proprieties. Twelve-week old Spontaneously Hypertensive Rats (SHR, n=14) and Wistar Kyoto rats (WKY, n=14) were randomly assigned into 4 groups: SHR, trained SHR (SHR-T), WKY and trained WKY (WKY-T). As expected, ten weeks of ET was effective in reducing blood pressure in SHR-T group. In addition, we analyzed the main markers of ET. Resting bradycardia, increase of exercise tolerance, peak oxygen uptake and citrate synthase enzyme activity in trained groups (WKY-T and SHR-T) showed that the aerobic condition was achieved. ET also corrected the skeletal muscle capillary rarefaction in SHR-T. In parallel, we observed reduction in percentage of type IIA and IIX fibers and simultaneous augmented percentage of type I fibers induced by ET in hypertension. These data suggest that ET prevented changes in soleus fiber type composition in SHR, since angiogenesis and oxidative enzyme activity increased are important adaptations of ET, acting in the maintenance of muscle oxidative metabolism and fiber profile.