175 resultados para mKdV-Liouville
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
La idea del artículo es presentar las pruebas del teorema de Liouville sobre funciones enteras. En este trabajo recalcamos dos importantes aplicaciones, una en la demostración del teorema fundamental del álgebra y otra en el área de las aplicaciones conformes. El presente contiene una breve nota histórica de la vida de Joseph Liouville y su trabajo. También contiene la version del teorema de Liouville para funciones doblemente periódicas, funciones armónicas y aplicaciones cuasiconformes.
Resumo:
The singular continuous spectrum of the Liouville operator of quantum statistical physics is, in general, properly included in the difference of the spectral values of the singular continuous spectrum of the associated Hamiltonian. The absolutely continuous spectrum of the Liouvillian may arise from a purely singular continuous Hamiltonian. We provide the correct formulas for the spectrum of the Liouville operator and show that the decaying states of the singular continuous subspace of the Hamiltonian do not necessarily contribute to the absolutely continuous subspace of the Liouvillian.
Resumo:
A reduced-density-operator description is developed for coherent optical phenomena in many-electron atomic systems, utilizing a Liouville-space, multiple-mode Floquet–Fourier representation. The Liouville-space formulation provides a natural generalization of the ordinary Hilbert-space (Hamiltonian) R-matrix-Floquet method, which has been developed for multi-photon transitions and laser-assisted electron–atom collision processes. In these applications, the R-matrix-Floquet method has been demonstrated to be capable of providing an accurate representation of the complex, multi-level structure of many-electron atomic systems in bound, continuum, and autoionizing states. The ordinary Hilbert-space (Hamiltonian) formulation of the R-matrix-Floquet method has been implemented in highly developed computer programs, which can provide a non-perturbative treatment of the interaction of a classical, multiple-mode electromagnetic field with a quantum system. This quantum system may correspond to a many-electron, bound atomic system and a single continuum electron. However, including pseudo-states in the expansion of the many-electron atomic wave function can provide a representation of multiple continuum electrons. The 'dressed' many-electron atomic states thereby obtained can be used in a realistic non-perturbative evaluation of the transition probabilities for an extensive class of atomic collision and radiation processes in the presence of intense electromagnetic fields. In order to incorporate environmental relaxation and decoherence phenomena, we propose to utilize the ordinary Hilbert-space (Hamiltonian) R-matrix-Floquet method as a starting-point for a Liouville-space (reduced-density-operator) formulation. To illustrate how the Liouville-space R-matrix-Floquet formulation can be implemented for coherent atomic radiative processes, we discuss applications to electromagnetically induced transparency, as well as to related pump–probe optical phenomena, and also to the unified description of radiative and dielectronic recombination in electron–ion beam interactions and high-temperature plasmas.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
For a particular family of long-range potentials V, we prove that the eigenvalues of the indefinite Sturm–Liouville operator A = sign(x)(−Δ+V(x)) accumulate to zero asymptotically along specific curves in the complex plane. Additionally, we relate the asymptotics of complex eigenvalues to the two-term asymptotics of the eigenvalues of associated self-adjoint operators.
Resumo:
The dressing and vertex operator formalism is emploied to study the soliton solutions of the N = I super mKdV and sinh-Gordon models. Explicit two and four vertex solutions are constructed. The relation between the soliton solutions of both models is verified. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Employing Hirota's method, a class of soliton solutions for the N = 2 super mKdV equations is proposed in terms of a single Grassmann parameter. Such solutions are shown to satisfy two copies of N = 1 supersymmetric mKdV equations connected by nontrivial algebraic identities. Using the super Miura transformation, we obtain solutions of the N = 2 super KdV equations. These are shown to generalize solutions derived previously. By using them KdV/sinh-Gordon hierarchy properties we generate the solutions of the N = 2 super sinh-Gordon as well.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)