Accumulation of complex eigenvalues of an indefinite Sturm--Liouville operator with a shifted Coulomb potential
Data(s) |
01/03/2016
|
---|---|
Resumo |
For a particular family of long-range potentials V, we prove that the eigenvalues of the indefinite Sturm–Liouville operator A = sign(x)(−Δ+V(x)) accumulate to zero asymptotically along specific curves in the complex plane. Additionally, we relate the asymptotics of complex eigenvalues to the two-term asymptotics of the eigenvalues of associated self-adjoint operators. |
Formato |
text |
Identificador |
http://centaur.reading.ac.uk/47043/1/paper_oam-styled_aftergalley.pdf Levitin, M. <http://centaur.reading.ac.uk/view/creators/90002805.html> and Seri, M. <http://centaur.reading.ac.uk/view/creators/90007049.html> (2016) Accumulation of complex eigenvalues of an indefinite Sturm--Liouville operator with a shifted Coulomb potential. Operators and Matrices, 10 (1). pp. 223-245. ISSN 1848-9974 doi: 10.7153/oam-10-14 <http://dx.doi.org/10.7153/oam-10-14> |
Idioma(s) |
en |
Publicador |
Publishing House Element d.o.o. |
Relação |
http://centaur.reading.ac.uk/47043/ creatorInternal Levitin, Michael creatorInternal Seri, Marcello http://oam.ele-math.com/10-14/Accumulation-of-complex-eigenvalues-of-an-indefinite-Sturm-Liouville-operator-with-a-shifted-Coulomb-potential 10.7153/oam-10-14 |
Tipo |
Article PeerReviewed |