2 resultados para mKdV-Liouville
em CaltechTHESIS
Resumo:
There are two competing models of our universe right now. One is Big Bang with inflation cosmology. The other is the cyclic model with ekpyrotic phase in each cycle. This paper is divided into two main parts according to these two models. In the first part, we quantify the potentially observable effects of a small violation of translational invariance during inflation, as characterized by the presence of a preferred point, line, or plane. We explore the imprint such a violation would leave on the cosmic microwave background anisotropy, and provide explicit formulas for the expected amplitudes $\langle a_{lm}a_{l'm'}^*\rangle$ of the spherical-harmonic coefficients. We then provide a model and study the two-point correlation of a massless scalar (the inflaton) when the stress tensor contains the energy density from an infinitely long straight cosmic string in addition to a cosmological constant. Finally, we discuss if inflation can reconcile with the Liouville's theorem as far as the fine-tuning problem is concerned. In the second part, we find several problems in the cyclic/ekpyrotic cosmology. First of all, quantum to classical transition would not happen during an ekpyrotic phase even for superhorizon modes, and therefore the fluctuations cannot be interpreted as classical. This implies the prediction of scale-free power spectrum in ekpyrotic/cyclic universe model requires more inspection. Secondly, we find that the usual mechanism to solve fine-tuning problems is not compatible with eternal universe which contains infinitely many cycles in both direction of time. Therefore, all fine-tuning problems including the flatness problem still asks for an explanation in any generic cyclic models.
Resumo:
The resolution of the so-called thermodynamic paradox is presented in this paper. It is shown, in direct contradiction to the results of several previously published papers, that the cutoff modes (evanescent modes having complex propagation constants) can carry power in a waveguide containing ferrite. The errors in all previous “proofs” which purport to show that the cutoff modes cannot carry power are uncovered. The boundary value problem underlying the paradox is studied in detail; it is shown that, although the solution is somewhat complicated, there is nothing paradoxical about it.
The general problem of electromagnetic wave propagation through rectangular guides filled inhomogeneously in cross-section with transversely magnetized ferrite is also studied. Application of the standard waveguide techniques reduces the TM part to the well-known self-adjoint Sturm Liouville eigenvalue equation. The TE part, however, leads in general to a non-self-adjoint eigenvalue equation. This equation and the associated expansion problem are studied in detail. Expansion coefficients and actual fields are determined for a particular problem.