864 resultados para linker polypeptides


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyanobacteria and red algae have intricate light-harvesting systems comprised of phycobilisomes that are attached to the outer side of the thylakoid membrane. The phycobilisomes absorb light in the wavelength range of 500-650 nm and transfer energy to the chlorophyll for photosynthesis. Phycobilisomes, which biochemically consist of phycobiliproteins and linker polypeptides, are particularly wonderful subjects for the detailed analysis of structure and function due to their spectral properties and their various components affected by growth conditions. The linker potypeptides are believed to mediate both the assembly of phycobiliproteins into the highly ordered arrays in the phycobilisomes and the interactions between the phycobilisomes and the thylakoid membrane. Functionally, they have been reported to improve energy migration by regulating the spectral characteristics of colored phycobiliproteins. In this review, the progress regarding linker polypeptides research, including separation approaches, structures and interactions with phycobiliproteins, as well as their functions in the phycobilisomes, is presented. In addition, some problems with previous work on linkers are also discussed. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cyanobacteria are the oldest life form making important contributions to global CO2 fixation on the Earth. Phycobilisomes (PBSs) are the major light harvesting systems of most cyanobacteria species. Recent availability of the whole genome database of cyanobacteria provides us a global and further view on the complex structural PBSs. A PBSs linker family is crucial in structure and function of major light-harvesting PBSs complexes. Linker polypeptides are considered to have the same ancestor with other phycobiliproteins (PBPs), and might have been diverged and evolved under particularly selective forces together. In this paper, a total of 192 putative linkers including 167 putative PBSs-associated linker genes and 25 Ferredoxin-NADP oxidoreductase (FNR) genes were detected through whole genome analysis of all 25 cyanobacterial genomes (20 finished and 5 in draft state). We compared the PBSs linker family of cyanobacteria in terms of gene structure, chromosome location, conservation domain, and polymorphic variants, and discussed the features and functions of the PBSs linker family. Most of PBSs-associated linkers in PBSs linker family are assembled into gene clusters with PBPs. A phylogenetic analysis based on protein data demonstrates a possibility of six classes of the linker family in cyanobacteria. Emergence, divergence, and disappearance of PBSs linkers among cyanobacterial species were due to speciation, gene duplication, gene transfer, or gene loss, and acclimation to various environmental selective pressures especially light.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Scanning tunneling microscope was used to investigate the in vitro assembly of R-phycoerythrin (R-PE) from the marine red alga Polysiphonia urceolata. The results showed that R-PE molecules assembled together by disc-to-disc while absorbing on HOPG surface, which just looked like the rods in the phycobilisomes. When the water-soluble R-PE was dissolved in 2% ethanol/water spreading solution, they could form monolayer film at the air/water interface. Similar disc-to-disc array of R-PE was constituted in the two-dimensional Langmuir-Blodgett film by the external force. It could be concluded that, apart from the key role of time linker polypeptides, the in vivo assembly of phycobiliproteins into phycobilisomes is also dependent on the endogenous properties of phycobiliprotein themselves.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

C-phycocyanin (CPC) and allophycocyanin (APC) were purified from Spirulina platensis, then the CPC was attached covalently to the APC by reacting their epsilon-amino groups. The excitation energy could be transferred from the CPC to the APC in the CPC-APC conjugate. Intact phycobilisomes (PBS), consisting of CPC, APC, colourless linker polypeptides, and APC B or L-cm, were isolated from S. platensis. Spectroscopic properties of the isolated PBSs kept at 20 degrees C for various times showed that the connection between the APC and the APC B or L-cm was looser than that between the CPC and the APC in the isolated PBSs. The CPC-APC conjugate was more stable than the isolated PBSs, and the linker polypeptides had a minor influence on the excitation energy transfer characteristic between different phycobiliproteins in the PBS.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Phycobiliproteins, together with linker polypeptides and various chromophores, are basic building blocks of phycobilisomes, a supramolecular complex with a light-harvesting function in cyanobacteria and red algae. Previous studies suggest that the different types of phycobiliproteins and the linker polypeptides originated from the same ancestor. Here we retrieve the phycobilisome-related genes from the well-annotated and even unfinished cyanobacteria genomes and find that many sites with elevated d(N)/d(S) ratios in different phycobiliprotein lineages are located in the chromophore-binding domain and the helical hairpin domains (X and Y). Covariation analyses also reveal that these sites are significantly correlated, showing strong evidence of the functional-structural importance of interactions among these residues. The potential selective pressure driving the diversification of phycobiliproteins may be related to the phycobiliprotein-chromophore microenvironment formation and the subunits interaction. Sites and genes identified here would provide targets for further research on the structural-functional role of these residues and energy transfer through the chromophores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Successful wound repair and normal turnover of the extracellular matrix relies on a balance between matrix metalloproteinases (MMPs) and their natural inhibitors (the TIMPs). When over-expression of MMPs and abnormally high levels of activation or low expression of TIMPs are encountered, excessive degradation of connective tissue and the formation of chronic ulcers can occur. One strategy to rebalance MMPs and TIMPs is to use inhibitors. We have designed a synthetic pseudopeptide inhibitor with an amine linker group based on a known high-affinity peptidomimetic MMP inhibitor have demonstrated inhibition of MMP-1, -2, -3 and -9 activity in standard solutions. The inhibitor was also tethered to a polyethylene glycol hydrogel using a facile reaction between the linker unit on the inhibitor and the hydrogel precursors. After tethering, we observed inhibition of the MMPs although there was an increase in the IC50s which was attributed to poor diffusion of the MMPs into the hydrogels, reduced activity of the tethered inhibitor or incomplete incorporation of the inhibitor into the hydrogels. When the tethered inhibitors were tested against chronic wound fluid we observed significant inhibition in proteolytic activity suggesting our approach may prove useful in rebalancing MMPs within chronic wounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The coordination driven self-assembly of discrete molecular triangles from a non-symmetric ambidentate linker 5-pyrimidinecarboxylate (5-pmc) and Pd(II)/Pt(II) based 90◦ acceptors is presented. Despite the possibility of formation of a mixture of isomeric macrocycles (linkage isomers) due to different connectivity of the ambidentate linker, formation of a single and symmetrical linkage somer in both the cases is an interesting observation. Moreover, the reported macrocycles represent the first example of discrete metallamacrocycles of bridging 5-pmc. While solution composition in both the cases was characterised by multinuclear NMR study and electrospray ionization mass spectrometry (ESI-MS), the identity of the assemblies in the solid state was established by X-ray single crystals structure analysis. Variable temperature NMR study clearly ruled out the formation of any other macrocycles by [4 + 4] or [2 + 2] self-assembly of the reacting components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alamethicin and several related microbial polypeptides, which contain a high proportion of agr-aminoisobutyric acid (Aib) residues, possess the ability to modify the permeability properties of phospholipid bilayer membranes. Alamethicin induces excitability phenomena in model membranes and has served as an excellent model for the study of voltage sensitive transmembrane channels. This review summarizes various aspects of the structural chemistry and membrane modifying properties of alamethicin and related Alb containing peptides. The presence of Aib residues in these sequences, constrains the polypeptides to 310 or agr-helical conformations. Functional membrane channels are formed by aggregation of cylindrical peptide helices, which span the lipid bilayer, forming a scaffolding for an aqueous column across the membrane. After consideration of the available data on the conductance characteristics of alamethicin channels, a working, hypothesis for a channel model is outlined. Channel aggregates in the lipid phase may be stabilized by intermolecular hydrogen bonding, involving a central glutamine residue and also by interactions between the macro-dipoles of proximate peptide helices. Fluctuations between different conductance states are rationalized by transitions between states of different aggregation and hence altered dimensions of the aqueous core or by changes in net dipole moment of the aggregate. Ion fluxes through the channel may also be affected by the electric field within the aqueous core.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Induced Cotton effects have been observed in the visible region on interaction of bilirubin with chiral mono- and diamines and poly-l-lysine. At alkaline pH distinct CD spectra are observed for bilirubin bound to the α-helical and β-sheet conformation of poly-l-lysine, which differ from that observed for the pigment bound to human serum albumin. The CD pattern observed on binding to N-acetyl-Lys-N1-methylamide in CH2Cl2 and dioxane is different from that observed in the presence of l-Ala-NH-(CH2)6-NH-l-Ala in dioxane. The latter case resembles the spectrum observed in the presence of human serum albumin. Binding to the helical polypeptide melittin and the antiparallel β-sheet peptide, gramicidin S, in aqueous solutions results in opposite signs of the bilirubin CD bands. The quenching of tryptophan fluorescence in melittin, in aqueous solution and enhancement of bilirubin fluorescence in dioxane on binding to gramicidin S have been used to monitor pigment-peptide interactions. The results suggest the utility of bilirubin as a conformational probe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two components self-assembly of a Pd-4 neutral molecular rectangle driven by Pd-O bond coordination has been achieved and this pi-electron rich rectangle shows fluorescence quenching in presence of nitroaromatics, which are the chemical signatures of many explosives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rarity of occurrence of cis peptide units is only partially explained by the higher intrinsic energy of the cis over the trans form, which provides a probability of 0·01 for cis peptide units to occur. An additional factor is the conformational restriction imposed by the occurrence of a cis peptide unit in a chain of trans units. Taking a section of three peptide units having the sequences trans-trans-trans (ttt) and trans-cis-trans (tct), conformational energy calculations indicate that the latter can occur only to an extent of 0·1%, unless there occurs the sequence X-Pro, in which case it is of the order of 30%. This explains the extreme rarity of cis peptide units, in general; however, it follows that even with non-prolyl residues, cis peptide units are not forbidden, but can occur in some rare examples and should be looked for.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Receptor guanylyl cyclases are multidomain proteins, and ligand binding to the extracellular domain increases the levels of intracellular cGMP. The intracellular domain of these receptors is composed of a kinase homology domain (KHD), a linker of similar to 70 amino acids, followed by the C-terminal guanylyl cyclase domain. Mechanisms by which these receptors are allosterically regulated by ligand binding to the extracellular domain and ATP binding to the KHD are not completely understood. Here we examine the role of the linker region in receptor guanylyl cyclases by a series of point mutations in receptor guanylyl cyclase C. The linker region is predicted to adopt a coiled coil structure and aid in dimerization, but we find that the effects of mutations neither follow a pattern predicted for a coiled coil peptide nor abrogate dimerization. Importantly, this region is critical for repressing the guanylyl cyclase activity of the receptor in the absence of ligand and permitting ligand-mediated activation of the cyclase domain. Mutant receptors with high basal guanylyl cyclase activity show no further activation in the presence of non-ionic detergents, suggesting that hydrophobic interactions in the basal and inactive conformation of the guanylyl cyclase domain are disrupted by mutation. Equivalent mutations in the linker region of guanylyl cyclase A also elevated the basal activity and abolished ligand-and detergent-mediated activation. We, therefore, have defined a key regulatory role for the linker region of receptor guanylyl cyclases which serves as a transducer of information from the extracellular domain via the KHD to the catalytic domain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The omega amino acids have a larger degree of conformational variability than the alpha amino acids, leading to a greater diversity of backbone structures in peptides and polypeptides. The synthetic accessibility of chiral beta-amino acids and the recent observation of novel helical folds in oligomers of cyclic beta-amino acids has led to renewed interest in the stereochemistry of omega-amino acid containing peptides. This review focuses on the conformational characteristics of the polymethylene chain in omega-amino acid segments and surveys structural features in peptides established by X-ray diffraction. The literature on polymers of achiral omega-amino acids (nylon derivatives) and chiral, substituted derivatives derived from trifunctional alpha-amino acids, reveals that while sheet-like, intermolecular hydrogen bonded structures are formed by the former, folded helices appear favoured by the latter. omega-Amino acids promise to expand the repertoire of peptide folds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transmembrane channel-forming polypeptides can function as uncouplers of mitochondrial oxidative phosphorylation. The observed effects are dependent on the phosphate ion (Pi) concentration in the medium. At low Pi (2.5 mM) the order of uncoupling efficiencies is gramicidin A much greater than alamethicin greater than tetraacetyl melittin greater than melittin. The remarkably high activity of gramicidin A suggests insertion of preformed channel dimers into the membrane. It is also suggested that lipid phase association of peptides is necessary in the other cases. At Pi = 100 mM inhibitory effects are observed for alamethicin and tetraacetyl melittin. Less pronounced inhibition is seen for melittin, while no such effect is noted for gramicidin A. The site of inhibition is shown to be complex IV, and the differences in the behavior of the peptides are rationalized in terms of channel structures.