989 resultados para light feedback
Resumo:
Users need to be able to address in-air gesture systems, which means finding where to perform gestures and how to direct them towards the intended system. This is necessary for input to be sensed correctly and without unintentionally affecting other systems. This thesis investigates novel interaction techniques which allow users to address gesture systems properly, helping them find where and how to gesture. It also investigates audio, tactile and interactive light displays for multimodal gesture feedback; these can be used by gesture systems with limited output capabilities (like mobile phones and small household controls), allowing the interaction techniques to be used by a variety of device types. It investigates tactile and interactive light displays in greater detail, as these are not as well understood as audio displays. Experiments 1 and 2 explored tactile feedback for gesture systems, comparing an ultrasound haptic display to wearable tactile displays at different body locations and investigating feedback designs. These experiments found that tactile feedback improves the user experience of gesturing by reassuring users that their movements are being sensed. Experiment 3 investigated interactive light displays for gesture systems, finding this novel display type effective for giving feedback and presenting information. It also found that interactive light feedback is enhanced by audio and tactile feedback. These feedback modalities were then used alongside audio feedback in two interaction techniques for addressing gesture systems: sensor strength feedback and rhythmic gestures. Sensor strength feedback is multimodal feedback that tells users how well they can be sensed, encouraging them to find where to gesture through active exploration. Experiment 4 found that they can do this with 51mm accuracy, with combinations of audio and interactive light feedback leading to the best performance. Rhythmic gestures are continuously repeated gesture movements which can be used to direct input. Experiment 5 investigated the usability of this technique, finding that users can match rhythmic gestures well and with ease. Finally, these interaction techniques were combined, resulting in a new single interaction for addressing gesture systems. Using this interaction, users could direct their input with rhythmic gestures while using the sensor strength feedback to find a good location for addressing the system. Experiment 6 studied the effectiveness and usability of this technique, as well as the design space for combining the two types of feedback. It found that this interaction was successful, with users matching 99.9% of rhythmic gestures, with 80mm accuracy from target points. The findings show that gesture systems could successfully use this interaction technique to allow users to address them. Novel design recommendations for using rhythmic gestures and sensor strength feedback were created, informed by the experiment findings.
Resumo:
A single longitudinal mode and narrow line width external cavity semiconductor laser is proposed. It is constructed with a semiconductor laser, collimator, a flame grating, and current and temperature control systems. The one facet of semiconductor laser is covered by high transmission film, and another is covered by high reflection film. The flame grating is used as light feedback element to select the mode of the semiconductor laser. The temperature of the constructed external cavity semiconductor laser is stabilized in order of 10(-3)degreesC by temperature control system. The experiments have been carried out and the results obtained-the spectral fine width of this laser is compressed to be less than 1.4MHz from its original line-width of more than 1200GHz and the output stability (including power and mode) is remarkably enhanced.
Resumo:
The intensity pulsations of a cw 1030 nm Yb:Phosphate monolithic waveguide laser with distributed feedback are described. We show that the pulsations could result from the coupling of the two orthogonal polarization modes through the two photon process of cooperative luminescence. The predictions of the presented theoretical model agree well with the observed behaviour.
Resumo:
An n degree-of-freedom Hamiltonian system with r (1¡r¡n) independent 0rst integrals which are in involution is calledpartially integrable Hamiltonian system. A partially integrable Hamiltonian system subject to light dampings andweak stochastic excitations is called quasi-partially integrable Hamiltonian system. In the present paper, the procedures for studying the 0rst-passage failure and its feedback minimization of quasi-partially integrable Hamiltonian systems are proposed. First, the stochastic averaging methodfor quasi-partially integrable Hamiltonian systems is brie4y reviewed. Then, basedon the averagedIt ˆo equations, a backwardKolmogorov equation governing the conditional reliability function, a set of generalized Pontryagin equations governing the conditional moments of 0rst-passage time and their boundary and initial conditions are established. After that, the dynamical programming equations and their associated boundary and 0nal time conditions for the control problems of maximization of reliability andof maximization of mean 0rst-passage time are formulated. The relationship between the backwardKolmogorov equation andthe dynamical programming equation for reliability maximization, andthat between the Pontryagin equation andthe dynamical programming equation for maximization of mean 0rst-passage time are discussed. Finally, an example is worked out to illustrate the proposed procedures and the e9ectiveness of feedback control in reducing 0rst-passage failure.
Resumo:
Light has long been used for the precise measurement of moving bodies, but the burgeoning field of optomechanics is concerned with the interaction of light and matter in a regime where the typically weak radiation pressure force of light is able to push back on the moving object. This field began with the realization in the late 1960's that the momentum imparted by a recoiling photon on a mirror would place fundamental limits on the smallest measurable displacement of that mirror. This coupling between the frequency of light and the motion of a mechanical object does much more than simply add noise, however. It has been used to cool objects to their quantum ground state, demonstrate electromagnetically-induced-transparency, and modify the damping and spring constant of the resonator. Amazingly, these radiation pressure effects have now been demonstrated in systems ranging 18 orders of magnitude in mass (kg to fg).
In this work we will focus on three diverse experiments in three different optomechanical devices which span the fields of inertial sensors, closed-loop feedback, and nonlinear dynamics. The mechanical elements presented cover 6 orders of magnitude in mass (ng to fg), but they all employ nano-scale photonic crystals to trap light and resonantly enhance the light-matter interaction. In the first experiment we take advantage of the sub-femtometer displacement resolution of our photonic crystals to demonstrate a sensitive chip-scale optical accelerometer with a kHz-frequency mechanical resonator. This sensor has a noise density of approximately 10 micro-g/rt-Hz over a useable bandwidth of approximately 20 kHz and we demonstrate at least 50 dB of linear dynamic sensor range. We also discuss methods to further improve performance of this device by a factor of 10.
In the second experiment, we used a closed-loop measurement and feedback system to damp and cool a room-temperature MHz-frequency mechanical oscillator from a phonon occupation of 6.5 million down to just 66. At the time of the experiment, this represented a world-record result for the laser cooling of a macroscopic mechanical element without the aid of cryogenic pre-cooling. Furthermore, this closed-loop damping yields a high-resolution force sensor with a practical bandwidth of 200 kHZ and the method has applications to other optomechanical sensors.
The final experiment contains results from a GHz-frequency mechanical resonator in a regime where the nonlinearity of the radiation-pressure interaction dominates the system dynamics. In this device we show self-oscillations of the mechanical element that are driven by multi-photon-phonon scattering. Control of the system allows us to initialize the mechanical oscillator into a stable high-amplitude attractor which would otherwise be inaccessible. To provide context, we begin this work by first presenting an intuitive overview of optomechanical systems and then providing an extended discussion of the principles underlying the design and fabrication of our optomechanical devices.
Resumo:
We propose a theoretical model for analyzing the dynamics of a periodically driven semiconductor laser subject to optical feedback from a microcantilever. We numerically investigate the temporal evolution of the light intensity of the semiconductor laser, and we show the interspikes of the light intensity. These interspikes of light intensity are also demonstrated in our experiment. The validity of the theoretical model is verified. The observed phenomenon has a potential application for resonant sensing. (C) 2008 Optical Society of America.
Resumo:
A novel method incorporating the shielded method and the post-processing method has been proposed to fabricate the pi-phase-shilted fibre grating. Then an Er-doped pi-phase-shifted distributed feedback fibre grating laser has been fabricated using the grating. The laser threshold is 20 mW. When pumped with 90 mW light at 980 nm, the laser gives an output of 1.1 mW. Its signal-to-noise ratio is better than 60 dB. It is demonstrated that the laser is single mode operation by means of a Fabry-Perot scanning interferometer.
Resumo:
Over the last decad , the paradigm of Total Quality Management (TQM) has been successfully forged in our business world. TQM may be defined as something that is both complex and ambiguous; nevertheless, some key elements or principles can be mentioned which are common to all of them: customer satisfaction, continuous improvement, commitment and leadership on the part of top management, involvement and support on the part of employees, teamwork, measurement via indicators and feedback. There are, in short, two main reasons for it having spread so widely: on the one hand, the successful diffusion of ISO 9000 standards for the implementation and certification of quality management systems, standards that have been associated to the TQM paradigm, and, on the other, the also successful diffusion of self evaluation models such as the EFQM promoted by the European Foundation for Quality Management and the Malcolm Baldrige National Quality Award in the USA, promoted by the Foundation for the Malcolm Baldrige National Quality Award. However, the quality movement is not without its problems as far as its mid and long term development is concerned. In this book some research findings related to these issues are presented.
Resumo:
A distributed-feedback (DFB) laser and a high-speed electroabsorption (EA) modulator are integrated, on the basis of the selective area MOVPE growth (SAG) technique and the ridge waveguide structure, for a 10 Gbit s(-1) optical transmission system. The integrated DFB laser/EA modulator device is packaged in a compact module with a 20% optical coupling efficiency to the single-mode fibre. The typical threshold current is 15 mA, and the side-mode suppression ratio is over 40 dB with the single-mode operation at 1550 nm. The module exhibits 1.2 mW fibre output power at a laser gain current of 70 mA and a modulator bias voltage of 0 V. The 3 dB bandwidth is 12 GHz. A dynamic extinction ratio of over 10 dB has been successfully achieved under 10 Gbit s(-1) non-return to zero (NRZ) operation, and a clearly open eye diagram is obtained.
Resumo:
Ridge-waveguide AlGaInAs/AlGaAs distributed feedback lasers with lattice-matched GaInP gratings were fabricated and their light-current characteristics, spectrum and far-field characteristics were measured. On the basis of our experimental results we analyze the effect of the electron stopper layer on light-current performance using the commercial laser simulation software PICS3D. The simulator is based on the self-consistent solution of drift diffusion equations, the Schrodinger equation, and the photon rate equation. The simulation results suggest that, with the use of a 80 nm-width p-doped Al0.6GaAs electron stopper layer, the slope efficiency can be increased and the threshold current can be reduced by more than 10 mA.
Resumo:
Using non-identical quantum wells as the active material, a new distributed-feed back laser is fabricated with period varied Bragg grating. The full width at half maximum of 115 nm is observed in the amplified spontaneous emission spectrum of this material, which is flatter and wider than that of the identical quantum wells. Two wavelengths of 1.51 mu m and 1.53 mu m are realized under different work conditions. The side-mode suppression ratios of both wavelengths reach 40 dB. This device can be used as the light source of coarse wavelength division multiplexer communication systems.
Resumo:
In this work, a novel light source of tandem InGaAsP/InGaAsP multiple quantum well electroabsoption modulator( EAM ) monolithically integrated with distributed feedback laser is fabricated by ultra-low-pressure ( 22 x 10(2) Pa ) selective area growth metal-organic chemical vapor diposition technique. Superior device performances have been obtained, such as low threshold current of 19 mA, output light power of 4.5 mW, and over 20 dB extinction ratio at 5 V applied voltage when coupled into a single mode fiber. Over 10 GHz 3dB bandwidth in EAM part is developed with a driving voltage of 2 V. Using this sinusoidal voltage driven integrated device, 10 GHz repetition rate pulse with an actual width of 13.7 ps without any compression elements is obtained due to the gate operation effect of tandem EAMs.
Resumo:
Ridge-waveguide distributed-feedback(DFB) lasers with highly strained InGaAs/InGaAsP active regions,emitting at 1.78 μm were fabricated by low pressure metal-organic vapor phase epitaxy(LP-MOVPE) and tested.The lasers exhibited threshold current of 33 mA for 900 μm long cavities at room temperature.A maximum light output power of 8 mW from one facet and an external differential quantum efficiency of 7% were also obtained.In oddition,the side mode suppression ratio (SMSR) is 27.5 dB.
Resumo:
An external cavity semiconductor laser interferometer used to measure far distance micro-vibration in real time is proposed. In the interferometer, a single longitudinal mode and excellent coherent characteristic grating external cavity semiconductor laser is constructed and acted as a light source and a phase compensator. Its coherent length exceeds 200 meters. The angle between normal and incidence beam of the far object is allowed to change in definite range during the measurement with this interferometer, and this makes the far distance interference measurement easier and more convenient. Also, it is not required to keep the amplitudes of the first and second harmonic components equal, and then the dynamic range is increased. A feedback control system is used to compensate the phase disturbance between the two interference beams introduced by environmental vibration.
Resumo:
Electroabsorption (EA) modulator integrated with partially gain coupling distributed feedback (DFB) lasers have been fabricated and shown high single mode yield and wavelength stability. The small signal bandwidth is about 7.5 GHz. Strained Si1-chiGechi/Si multiple quantum well (MQW) resonant-cavity enhanced (RCE) photodetectors with SiO2/Si distributed Bragg reflector (DBR) as the mirrors have been fabricated and shown a clear narrow bandwidth response. The external quantum efficiency at 1.3 mum is measured to be about 3.5% under reverse bias of 16 V. A novel GaInNAs/GaAs MQW RCE p-i-n photodetector with high reflectance GaAs/ALAs DBR mirrors has also been demonstrated and shown the selectively detecting function with the FWHM of peak response of 12 nm.