999 resultados para lcc: knowledge


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Web 2.0 und soziale Netzwerke gaben erste Impulse für neue Formen der Online-Lehre, welche die umfassende Vernetzung von Objekten und Nutzern im Internet nachhaltig einsetzen. Die Vielfältigkeit der unterschiedlichen Systeme erschwert aber deren ganzheitliche Nutzung in einem umfassenden Lernszenario, das den Anforderungen der modernen Informationsgesellschaft genügt. In diesem Beitrag wird eine auf dem Konnektivismus basierende Plattform für die Online-Lehre namens “Wiki-Learnia” präsentiert, welche alle wesentlichen Abschnitte des lebenslangen Lernens abbildet. Unter Einsatz zeitgemäßer Technologien werden nicht nur Nutzer untereinander verbunden, sondern auch Nutzer mit dedizierten Inhalten sowie ggf. zugehörigen Autoren und/oder Tutoren verknüpft. Für ersteres werden verschiedene Kommunikations-Werkzeuge des Web 2.0 (soziale Netzwerke, Chats, Foren etc.) eingesetzt. Letzteres fußt auf dem sogenannten “Learning-Hub”-Ansatz, welcher mit Hilfe von Web-3.0-Mechanismen insbesondere durch eine semantische Metasuchmaschine instrumentiert wird. Zum Aufzeigen der praktischen Relevanz des Ansatzes wird das mediengestützte Juniorstudium der Universität Rostock vorgestellt, ein Projekt, das Schüler der Abiturstufe aufs Studium vorbereitet. Anhand der speziellen Anforderungen dieses Vorhabens werden der enorme Funktionsumfang und die große Flexibilität von Wiki-Learnia demonstriert.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The UK government aims at achieving 80% CO2 emission reduction by 2050 which requires collective efforts across all the UK industry sectors. In particular, the housing sector has a large potential to contribute to achieving the aim because the housing sector alone accounts for 27% of the total UK CO2 emission, and furthermore, 87% of the housing which is responsible for current 27% CO2 emission will still stand in 2050. Therefore, it is essential to improve energy efficiency of existing housing stock built with low energy efficiency standard. In order for this, a whole‐house needs to be refurbished in a sustainable way by considering the life time financial and environmental impacts of a refurbished house. However, the current refurbishment process seems to be challenging to generate a financially and environmentally affordable refurbishment solution due to the highly fragmented nature of refurbishment practice and a lack of knowledge and skills about whole‐house refurbishment in the construction industry. In order to generate an affordable refurbishment solution, diverse information regarding costs and environmental impacts of refurbishment measures and materials should be collected and integrated in right sequences throughout the refurbishment project life cycle among key project stakeholders. Consequently, various researchers increasingly study a way of utilizing Building Information Modelling (BIM) to tackle current problems in the construction industry because BIM can support construction professionals to manage construction projects in a collaborative manner by integrating diverse information, and to determine the best refurbishment solution among various alternatives by calculating the life cycle costs and lifetime CO2 performance of a refurbishment solution. Despite the capability of BIM, the BIM adoption rate is low with 25% in the housing sector and it has been rarely studied about a way of using BIM for housing refurbishment projects. Therefore, this research aims to develop a BIM framework to formulate a financially and environmentally affordable whole‐house refurbishment solution based on the Life Cycle Costing (LCC) and Life Cycle Assessment (LCA) methods simultaneously. In order to achieve the aim, a BIM feasibility study was conducted as a pilot study to examine whether BIM is suitable for housing refurbishment, and a BIM framework was developed based on the grounded theory because there was no precedent research. After the development of a BIM framework, this framework was examined by a hypothetical case study using BIM input data collected from questionnaire survey regarding homeowners’ preferences for housing refurbishment. Finally, validation of the BIM framework was conducted among academics and professionals by providing the BIM framework and a formulated refurbishment solution based on the LCC and LCA studies through the framework. As a result, BIM was identified as suitable for housing refurbishment as a management tool, and it is timely for developing the BIM framework. The BIM framework with seven project stages was developed to formulate an affordable refurbishment solution. Through the case study, the Building Regulation is identified as the most affordable energy efficiency standard which renders the best LCC and LCA results when it is applied for whole‐house refurbishment solution. In addition, the Fabric Energy Efficiency Standard (FEES) is recommended when customers are willing to adopt high energy standard, and the maximum 60% of CO2 emissions can be reduced through whole‐house fabric refurbishment with the FEES. Furthermore, limitations and challenges to fully utilize BIM framework for housing refurbishment were revealed such as a lack of BIM objects with proper cost and environmental information, limited interoperability between different BIM software and limited information of LCC and LCA datasets in BIM system. Finally, the BIM framework was validated as suitable for housing refurbishment projects, and reviewers commented that the framework can be more practical if a specific BIM library for housing refurbishment with proper LCC and LCA datasets is developed. This research is expected to provide a systematic way of formulating a refurbishment solution using BIM, and to become a basis for further research on BIM for the housing sector to resolve the current limitations and challenges. Future research should enhance the BIM framework by developing more detailed process map and develop BIM objects with proper LCC and LCA Information.

Relevância:

20.00% 20.00%

Publicador: