981 resultados para large underground autonomous vehicles


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes an autonomous navigation system for a large underground mining vehicle. The control architecture is based on a robust reactive wall-following behaviour. To make it purposeful we provide driving hints derived from an approximate nodal-map. For most of the time, the vehicle is driven with weak localization (odometry). This need only be improved at intersections where decisions must be made – a technique we refer to as opportunistic localization. The paper briefly reviews absolute and relative navigation strategies, and describes an implementation of a reactive navigation system on a 30 tonne Load-Haul-Dump truck. This truck has achieved full-speed autonomous operation at an artificial test mine, and subsequently, at a operational underground mine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Describes how many of the navigation techniques developed by the robotics research community over the last decade may be applied to a class of underground mining vehicles (LHDs and haul trucks). We review the current state-of-the-art in this area and conclude that there are essentially two basic methods of navigation applicable. We describe an implementation of a reactive navigation system on a 30 tonne LHD which has achieved full-speed operation at a production mine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simultaneous Localization and Mapping (SLAM) do not result in consistent maps of large areas because of gradual increase of the uncertainty for long term missions. In addition, as the size of the map grows the computational cost increases, making SLAM solutions unsuitable for on-line applications. This thesis surveys SLAM approaches paying special attention to those approaches aimed to work on large scenarios. Special focus is given to existing underwater SLAM applications. A technique based on using independent local maps together with a global stochastic map is presented. This technique is called Selective Submap Joining SLAM (SSJS). A global map contains relative transformations between local maps, which are updated once a new loop is detected. Maps sharing several features are fused, maintaining the correlation between landmarks and vehicle's pose. The use of local maps reduces computational costs and improves map consistency as compared to state of the art techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chaotic traffic, prevalent in many countries, is marked by a large number of vehicles driving with different speeds without following any predefined speed lanes. Such traffic rules out using any planning algorithm for these vehicles which is based upon the maintenance of speed lanes and lane changes. The absence of speed lanes may imply more bandwidth and easier overtaking in cases where vehicles vary considerably in both their size and speed. Inspired by the performance of artificial potential fields in the planning of mobile robots, we propose here lateral potentials as measures to enable vehicles to decide about their lateral positions on the road. Each vehicle is subjected to a potential from obstacles and vehicles in front, road boundaries, obstacles and vehicles to the side and higher speed vehicles to the rear. All these potentials are lateral and only govern steering the vehicle. A speed control mechanism is also used for longitudinal control of vehicle. The proposed system is shown to perform well for obstacle avoidance, vehicle following and overtaking behaviors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The current state of the art in the planning and coordination of autonomous vehicles is based upon the presence of speed lanes. In a traffic scenario where there is a large diversity between vehicles the removal of speed lanes can generate a significantly higher traffic bandwidth. Vehicle navigation in such unorganized traffic is considered. An evolutionary based trajectory planning technique has the advantages of making driving efficient and safe, however it also has to surpass the hurdle of computational cost. In this paper, we propose a real time genetic algorithm with Bezier curves for trajectory planning. The main contribution is the integration of vehicle following and overtaking behaviour for general traffic as heuristics for the coordination between vehicles. The resultant coordination strategy is fast and near-optimal. As the vehicles move, uncertainties may arise which are constantly adapted to, and may even lead to either the cancellation of an overtaking procedure or the initiation of one. Higher level planning is performed by Dijkstra's algorithm which indicates the route to be followed by the vehicle in a road network. Re-planning is carried out when a road blockage or obstacle is detected. Experimental results confirm the success of the algorithm subject to optimal high and low-level planning, re-planning and overtaking.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper employs a unique decentralised cooperative control method to realise a formation-based collision avoidance strategy for a group of autonomous vehicles. In this approach, the vehicles' role in the formation and their alert and danger areas are first defined, and the formation-based intra-group and external collision avoidance methods are then proposed to translate the collision avoidance problem into the formation stability problem. The extension–decomposition–aggregation formation control method is next employed to stabilise the original and modified formations, whilst manoeuvring, and subsequently solve their collision avoidance problem indirectly. Simulation study verifies the feasibility and effectiveness of the intra-group and external collision avoidance strategy. It is demonstrated that both formation control and collision avoidance problems can be simultaneously solved if the stability of the expanded formation including external obstacles can be satisfied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the results of AcousticRobot'13 - a noise measurement campaign that took place off the Portuguese Coast in May 2013, using two high endurance autonomous vehicles capable of silent operation (an underwater glider and an autonmomous sailing vessel) equipped with hydrophones, and a moored hydrophone that served as reference. We show that the autonomous vehicles used can provide useful measurements of underwater noise, and describe the main advantages and shortcomings that became evident during the campaign.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Behavior-based navigation of autonomous vehicles requires the recognition of the navigable areas and the potential obstacles. In this paper we describe a model-based objects recognition system which is part of an image interpretation system intended to assist the navigation of autonomous vehicles that operate in industrial environments. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using a rule-based cooperative expert system

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Planning is one of the key problems for autonomous vehicles operating in road scenarios. Present planning algorithms operate with the assumption that traffic is organised in predefined speed lanes, which makes it impossible to allow autonomous vehicles in countries with unorganised traffic. Unorganised traffic is though capable of higher traffic bandwidths when constituting vehicles vary in their speed capabilities and sizes. Diverse vehicles in an unorganised exhibit unique driving behaviours which are analysed in this paper by a simulation study. The aim of the work reported here is to create a planning algorithm for mixed traffic consisting of both autonomous and non-autonomous vehicles without any inter-vehicle communication. The awareness (e.g. vision) of every vehicle is restricted to nearby vehicles only and a straight infinite road is assumed for decision making regarding navigation in the presence of multiple vehicles. Exhibited behaviours include obstacle avoidance, overtaking, giving way for vehicles to overtake from behind, vehicle following, adjusting the lateral lane position and so on. A conflict of plans is a major issue which will almost certainly arise in the absence of inter-vehicle communication. Hence each vehicle needs to continuously track other vehicles and rectify plans whenever a collision seems likely. Further it is observed here that driver aggression plays a vital role in overall traffic dynamics, hence this has also been factored in accordingly. This work is hence a step forward towards achieving autonomous vehicles in unorganised traffic, while similar effort would be required for planning problems such as intersections, mergers, diversions and other modules like localisation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The planning of semi-autonomous vehicles in traffic scenarios is a relatively new problem that contributes towards the goal of making road travel by vehicles free of human drivers. An algorithm needs to ensure optimal real time planning of multiple vehicles (moving in either direction along a road), in the presence of a complex obstacle network. Unlike other approaches, here we assume that speed lanes are not present and that different lanes do not need to be maintained for inbound and outbound traffic. Our basic hypothesis is to carry forward the planning task to ensure that a sufficient distance is maintained by each vehicle from all other vehicles, obstacles and road boundaries. We present here a 4-layer planning algorithm that consists of road selection (for selecting the individual roads of traversal to reach the goal), pathway selection (a strategy to avoid and/or overtake obstacles, road diversions and other blockages), pathway distribution (to select the position of a vehicle at every instance of time in a pathway), and trajectory generation (for generating a curve, smooth enough, to allow for the maximum possible speed). Cooperation between vehicles is handled separately at the different levels, the aim being to maximize the separation between vehicles. Simulated results exhibit behaviours of smooth, efficient and safe driving of vehicles in multiple scenarios; along with typical vehicle behaviours including following and overtaking.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Planning of autonomous vehicles in the absence of speed lanes is a less-researched problem. However, it is an important step toward extending the possibility of autonomous vehicles to countries where speed lanes are not followed. The advantages of having nonlane-oriented traffic include larger traffic bandwidth and more overtaking, which are features that are highlighted when vehicles vary in terms of speed and size. In the most general case, the road would be filled with a complex grid of static obstacles and vehicles of varying speeds. The optimal travel plan consists of a set of maneuvers that enables a vehicle to avoid obstacles and to overtake vehicles in an optimal manner and, in turn, enable other vehicles to overtake. The desired characteristics of this planning scenario include near completeness and near optimality in real time with an unstructured environment, with vehicles essentially displaying a high degree of cooperation and enabling every possible(safe) overtaking procedure to be completed as soon as possible. Challenges addressed in this paper include a (fast) method for initial path generation using an elastic strip, (re-)defining the notion of completeness specific to the problem, and inducing the notion of cooperation in the elastic strip. Using this approach, vehicular behaviors of overtaking, cooperation, vehicle following,obstacle avoidance, etc., are demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unorganized traffic is a generalized form of travel wherein vehicles do not adhere to any predefined lanes and can travel in-between lanes. Such travel is visible in a number of countries e.g. India, wherein it enables a higher traffic bandwidth, more overtaking and more efficient travel. These advantages are visible when the vehicles vary considerably in size and speed, in the absence of which the predefined lanes are near-optimal. Motion planning for multiple autonomous vehicles in unorganized traffic deals with deciding on the manner in which every vehicle travels, ensuring no collision either with each other or with static obstacles. In this paper the notion of predefined lanes is generalized to model unorganized travel for the purpose of planning vehicles travel. A uniform cost search is used for finding the optimal motion strategy of a vehicle, amidst the known travel plans of the other vehicles. The aim is to maximize the separation between the vehicles and static obstacles. The search is responsible for defining an optimal lane distribution among vehicles in the planning scenario. Clothoid curves are used for maintaining a lane or changing lanes. Experiments are performed by simulation over a set of challenging scenarios with a complex grid of obstacles. Additionally behaviours of overtaking, waiting for a vehicle to cross and following another vehicle are exhibited.