983 resultados para hardware redundancy
Resumo:
This thesis presents the study and development of fault-tolerant techniques for programmable architectures, the well-known Field Programmable Gate Arrays (FPGAs), customizable by SRAM. FPGAs are becoming more valuable for space applications because of the high density, high performance, reduced development cost and re-programmability. In particular, SRAM-based FPGAs are very valuable for remote missions because of the possibility of being reprogrammed by the user as many times as necessary in a very short period. SRAM-based FPGA and micro-controllers represent a wide range of components in space applications, and as a result will be the focus of this work, more specifically the Virtex® family from Xilinx and the architecture of the 8051 micro-controller from Intel. The Triple Modular Redundancy (TMR) with voters is a common high-level technique to protect ASICs against single event upset (SEU) and it can also be applied to FPGAs. The TMR technique was first tested in the Virtex® FPGA architecture by using a small design based on counters. Faults were injected in all sensitive parts of the FPGA and a detailed analysis of the effect of a fault in a TMR design synthesized in the Virtex® platform was performed. Results from fault injection and from a radiation ground test facility showed the efficiency of the TMR for the related case study circuit. Although TMR has showed a high reliability, this technique presents some limitations, such as area overhead, three times more input and output pins and, consequently, a significant increase in power dissipation. Aiming to reduce TMR costs and improve reliability, an innovative high-level technique for designing fault-tolerant systems in SRAM-based FPGAs was developed, without modification in the FPGA architecture. This technique combines time and hardware redundancy to reduce overhead and to ensure reliability. It is based on duplication with comparison and concurrent error detection. The new technique proposed in this work was specifically developed for FPGAs to cope with transient faults in the user combinational and sequential logic, while also reducing pin count, area and power dissipation. The methodology was validated by fault injection experiments in an emulation board. The thesis presents comparison results in fault coverage, area and performance between the discussed techniques.
Resumo:
Collaborative hardening and hardware redundancy are nowadays the most interesting solutions in terms of fault tolerance achieved and low extra cost imposed to the project budget. Thanks to the powerful and cheap digital devices that are available in the market, extra processing capabilities can be used for redundant tasks, not only in early data processing (sensed data) but also in routing and interfacing1
Resumo:
The continuous evolution of integrated circuit technology has allowed integrating thousands of transistors on a single chip. This is due to the miniaturization process, which reduces the diameter of wires and transistors. One drawback of this process is that the circuit becomes more fragile and susceptible to break, making the circuit more susceptible to permanent faults during the manufacturing process as well as during their lifetime. Coarse Grained Reconfigurable Architectures (CGRAs) have been used as an alternative to traditional architectures in an attempt to tolerate such faults due to its intrinsic hardware redundancy and high performance. This work proposes a fault tolerance mechanism in a CGRA in order to increase the architecture fault tolerance even considering a high fault rate. The proposed mechanism was added to the scheduler, which is the mechanism responsible for mapping instructions onto the architecture. The instruction mapping occurs at runtime, translating binary code without the need for recompilation. Furthermore, to allow faster implementation, instruction mapping is performed using a greedy module scheduling algorithm, which consists of a software pipeline technique for loop acceleration. The results show that, even with the proposed mechanism, the time for mapping instructions is still in order of microseconds. This result allows that instruction mapping process remains at runtime. In addition, a study was also carried out mapping scheduler rate. The results demonstrate that even at fault rates over 50% in functional units and interconnection components, the scheduler was able to map instructions onto the architecture in most of the tested applications.
Resumo:
Battery energy storage systems have traditionally been manufactured using new batteries with a good reliability. The high cost of such a system has led to investigations of using second life transportation batteries to provide an alternative energy storage capability. However, the reliability and performance of these batteries is unclear and multi-modular power electronics with redundancy have been suggested as a means of helping with this issue. This paper reviews work already undertaken on battery failure rate to suggest suitable figures for use in reliability calculations. The paper then uses reliability analysis and a numerical example to investigate six different multi-modular topologies and suggests how the number of series battery strings and power electronic module redundancy should be determined for the lowest hardware cost using a numerical example. The results reveal that the cascaded dc-side modular with single inverter is the lowest cost solution for a range of battery failure rates.
Resumo:
This letter presents an FPGA implementation of a fault-tolerant Hopfield NeuralNetwork (HNN). The robustness of this circuit against Single Event Upsets (SEUs) and Single Event Transients (SETs) has been evaluated. Results show the fault tolerance of the proposed design, compared to a previous non fault- tolerant implementation and a solution based on triple modular redundancy (TMR) of a standard HNN design.
Resumo:
Geographic Data Warehouses (GDW) are one of the main technologies used in decision-making processes and spatial analysis, and the literature proposes several conceptual and logical data models for GDW. However, little effort has been focused on studying how spatial data redundancy affects SOLAP (Spatial On-Line Analytical Processing) query performance over GDW. In this paper, we investigate this issue. Firstly, we compare redundant and non-redundant GDW schemas and conclude that redundancy is related to high performance losses. We also analyze the issue of indexing, aiming at improving SOLAP query performance on a redundant GDW. Comparisons of the SB-index approach, the star-join aided by R-tree and the star-join aided by GiST indicate that the SB-index significantly improves the elapsed time in query processing from 25% up to 99% with regard to SOLAP queries defined over the spatial predicates of intersection, enclosure and containment and applied to roll-up and drill-down operations. We also investigate the impact of the increase in data volume on the performance. The increase did not impair the performance of the SB-index, which highly improved the elapsed time in query processing. Performance tests also show that the SB-index is far more compact than the star-join, requiring only a small fraction of at most 0.20% of the volume. Moreover, we propose a specific enhancement of the SB-index to deal with spatial data redundancy. This enhancement improved performance from 80 to 91% for redundant GDW schemas.
Resumo:
This letter shows that the matrix can be used for redundancy and observability analysis of metering systems composed of PMU measurements and conventional measurements (power and voltage magnitude measurements). The matrix is obtained via triangular factorization of the Jacobian matrix. Observability analysis and restoration is carried out during the triangular factorization of the Jacobian matrix, and the redundancy analysis is made exploring the matrix structure. As a consequence, the matrix can be used for metering system planning considering conventional and PMU measurements. These features of the matrix will be outlined and illustrated by numerical examples.
Resumo:
This paper presents the design and implementation of an embedded soft sensor, i. e., a generic and autonomous hardware module, which can be applied to many complex plants, wherein a certain variable cannot be directly measured. It is implemented based on a fuzzy identification algorithm called ""Limited Rules"", employed to model continuous nonlinear processes. The fuzzy model has a Takagi-Sugeno-Kang structure and the premise parameters are defined based on the Fuzzy C-Means (FCM) clustering algorithm. The firmware contains the soft sensor and it runs online, estimating the target variable from other available variables. Tests have been performed using a simulated pH neutralization plant. The results of the embedded soft sensor have been considered satisfactory. A complete embedded inferential control system is also presented, including a soft sensor and a PID controller. (c) 2007, ISA. Published by Elsevier Ltd. All rights reserved.
Resumo:
High performance video codec is mandatory for multimedia applications such as video-on-demand and video conferencing. Recent research has proposed numerous video coding techniques to meet the requirement in bandwidth, delay, loss and Quality-of-Service (QoS). In this paper, we present our investigations on inter-subband self-similarity within the wavelet-decomposed video frames using neural networks, and study the performance of applying the spatial network model to all video frames over time. The goal of our proposed method is to restore the highest perceptual quality for video transmitted over a highly congested network. Our contributions in this paper are: (1) A new coding model with neural network based, inter-subband redundancy (ISR) prediction for video coding using wavelet (2) The performance of 1D and 2D ISR prediction, including multiple levels of wavelet decompositions. Our result shows a short-term quality enhancement may be obtained using both 1D and 2D ISR prediction.
Resumo:
Since the last decade research in Group Decision Making area have been focus in the building of meeting rooms that could support the decision making task and improve the quality of those decisions. However the emergence of Ambient Intelligence concept contributes with a new perspective, a different way of viewing traditional decision rooms. In this paper we will present an overview of Smart Decision Rooms providing Intelligence to the meeting environment, and we will also present LAID, an Ambient Intelligence Environment oriented to support Group Decision Making and some of the software tools that we already have installed in this environment.
Resumo:
Mestrado em Engenharia Informática
Resumo:
Conferência: 39th Annual Conference of the IEEE Industrial-Electronics-Society (IECON), Vienna, Austria, Nov 10-14, 2013
Resumo:
Relatório do Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações