535 resultados para furoquinoline alkaloids
Resumo:
Esenbeckia leiocarpa Engl. (Rutaceae), popularly known as guaranta, goiabeira, is a native tree from Brazil. Bioactivity-guided fractionation of the ethanol stems extract afforded the isolation of six alkaloids: leiokinine A, leptomerine, kokusaginine, skimmianine, maculine and flindersiamine. All isolated compounds were tested for acetyl cholinesterase inhibition, in vitro and displayed anticholinesterasic activity. The alkaloid leptomerine showed the highest activity (IC(50) = 2.5 mu M), similar to that of the reference compound galanthamine (IC(50) = 1.7 mu M). The results showed for the first time the presence of alkaloids leptomerine and skimmianine in E. leiocarpa (Engl.) with potent anticholinesterasic activity.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The chemical composition of two specimens of Esenbeckia grandiflora, collected in the south and northeast regions of Brazil, was investigated. In this study, three β-indolopyridoquinazoline alkaloids from the leaves (rutaecarpine, 1-hydroxyrutaecarpine) and roots (euxylophoricine D) were isolated for the first time in this genus. In addition, the triterpenes α-amyrin, β-amyrin, α-amyrenonol, β-amyrenonol, 3α-hydroxy-ursan-12-one, and 3α-hydroxy-12,13-epoxy-oleanane, the coumarins auraptene, umbelliferone, pimpinelin, and xanthotoxin, the furoquinoline alkaloids delbine and kokusaginine, and the phytosteroids sitosterol, stigmasterol, campesterol and 3β-O-β-D-glucopyranosylsitosterol were also isolated from the leaves, twigs, roots and stems of this species. Structures of these compounds were established by spectral analysis.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fractionation of the methanol extract of the leaves of Oricia renieri and Oricia suaveolens (Rutaceae) led to the isolation of 13 compounds including the hitherto unknown furoquinoline alkaloid named 6,7-methylenedioxy-5-hydroxy-8-methoxydictamnine (1) and a flavanone glycoside named 5-hydroxy-40-methoxy-7-O-[a-Lrhamnopyranosyl(1000→500)-b-D-apiofuranosyl]-flavanoside (2), together with 11 known compounds (3–13). The structures of the compounds were determined by comprehensive analyses of their 1D and 2D NMR, mass spectral data and comparison. All compounds isolated were examined for their activity against human carcinoma cell lines. The alkaloids 1, 5, 12, 13 and the phenolic 2, 8, 11 tested compounds exhibited non-selective moderate cytotoxic activity with IC50 8.7–15.9mM whereas compounds 3, 4, 6, 7, 9 and 10 showed low activity.
Resumo:
Introduction - Ayahuasca is obtained by infusing the pounded stems of Banisteriopsis caapi in combination with the leaves of Psychotria viridis. P. viridis is rich in the psychedelic indole N,N-dimethyltryptamine, whereas B. caapi contains substantial amounts of beta-carboline alkaloids, mainly harmine, harmaline and tetrahydroharmine, which are monoamine-oxidase inhibitors. Because of differences in composition in ayahuasca preparations, a method to measure their main active constituents is needed. Objective - To develop a gas chromatographic method for the simultaneous determination of dimethyltryptamine and the main beta-carbolines found in ayahuasca preparations. Methodology - The alkaloids were extracted by means of solid phase extraction (C(18)) and detected by gas chromatography with nitrogen/phosphorous detector. Results - The lower limit of quantification (LLOQ) was 0.02 mg/mL for all analytes. The calibration curves were linear over a concentration range of 0.02-4.0 mg/mL (r(2) > 0.99). The method was also precise (RSD < 10%). Conclusion - A simple gas chromatographic method to determine the main alkaloids found in ayahuasca was developed and validated. The method can be useful to estimate administered doses in animals and humans for further pharmacological and toxicological investigations of ayahuasca. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
The alkaloid extract and five alkaloids isolated from subterranean stem bark of Duguetia furfuracea (Annonaceae) were investigated for the following activities: antitumoral, trypanocidal and leishmanicidal. Dicentrinone showed weak cytotoxicity, but it had the strongest leishmanicidal activity IC(50) 0.01 mu M). Duguetine and duguetine beta-N-oxide caused considerable antitumoral activity in every cell lines evaluated, although duguetine was more active against trypomastigote forms (IC(50) 9.32 mu M) than other alkaloids tested. (C) 2009 Elsevier GmbH. All rights reserved.
Resumo:
2D-NMR spectroscopic data is reported for the haliclonacyclamines A - D (1)-(4) and for two bismethiodide adducts (5) and (6). The structures of two new alkaloids, haliclonacyclamines C (3) and D (4), which are the 15,16-dihydro analogues of the haliclonacyclamines A (1) and B (2) are described. Revised assignments deduced by 2D-INADEQUATE spectroscopy are presented for (1) and (2). The alkene substituent in the C,, spacer group of (2) and (4) is positioned between C27-C28 by NMR, and confirmed by x-ray structural analysis for (2). Metabolite (3) has a C25-C26 double bond. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Light-microscopic and electron-microscopic studies of the tropical marine sponge Haliclona sp. (Or der: Haplosclerida Family: Haliclonidae) from Heron Island, Great Barrier Reef, have revealed that this sponge is characterized by the presence of dinoflagellates and by nematocysts. The dinoflagellates are 7-10 mu m in size, intracellular, and contain a pyrenoid with a single stalk, whereas the single chloroplast is branched, curved, and lacks grana. Mitochondria are present, and the nucleus is oval and has distinct chromosomal structure. The dinoflagellates are morphologically similar to Symbiodinium microadriaticum, the common intracellular symbiont of corals, although more detailed biochemical and molecular studies are required to provide a precise taxonomic assignment. The major sponge cell types found in Haliclona sp, are spongocytes, choanocytes, and archaeocytes; groups of dinoflagellates are enclosed within large vacuoles in the archaeocytes. The occurrence of dinoflagellates in marine sponges has previously been thought to be restricted to a small group of sponges including the excavating hadromerid sponges; the dinoflagellates in these sponges are usually referred to as symbionts. The role of the dinoflagellates present in Haliclona sp. as a genuine symbiotic partner requires experimental investigation. The sponge grows on coral substrates, from which it may acquire the nematocysts, and shows features, such as mucus production, which are typical of some excavating sponges. The cytotoxic alkaloids, haliclonacyclamines A and B, associated with Haliclona sp. are shown by Percoll density gradient fractionation to be localized within the sponge cells rather than the dinoflagellates. The ability to synthesize bioactive compounds such as the haliclonacyclamines may help Haliclona sp. to preserve its remarkable ecological niche.
Resumo:
Neural mechanisms underlying the onset and maintenance of epileptic seizures involve alterations in inhibitory and/or excitatory neurotransmitter pathways. Thus, the prospecting of novel molecules from natural products that target both inhibition and excitation systems has deserved interest in the rational design of new anticonvulsants. We isolated the alkaloids (+)-erythravine and ( +)-11-alpha-hydroxyerythravine from the flowers of Erythrina mulungu and evaluated the action of these compounds against chemically induced seizures in rats. Our results showed that the administration of different doses of (+)-erythravine inhibited seizures evoked by bicuculline, pentylenetetrazole, and kainic acid at maximum of 80, 100, and 100%, respectively, whereas different doses of (+)-11-alpha-hydroxy-erythravine inhibited seizures at a maximum of 100% when induced by bicuculline, NMDA, and kainic acid, and, to a lesser extent, PTZ (60%). The analysis of mean latency to seizure onset of nonprotected animals, for specific doses of alkaloids, showed that (+)-erythravine increased latencies to seizures induced by bicuculline. Although (+)-erythravine exhibited very weak anticonvulsant action against seizures induced by NMDA, this alkaloid increased the latency in this assay. The increase in latency to onset of seizures promoted by (+)-11-alpha-hydroxy-erythravine reached a maximum of threefold in the bicuculline test. All animals were protected against death when treated with different doses of (+)-11-alpha-hydroxy-erythravine in the tests using the four chemical convulsants. Identical results were obtained when using (+)-erythravine in the tests of bicuculline, NMDA, and VIZ, and, to a lesser extent, kainic acid. Therefore, these data validate the anticonvulsant properties of the tested alkaloids, which is of relevance in consideration of the ethnopharmacological/biotechnological potential of E. mulungu. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Tabernaemontana catharinensis root bark ethanol extract, EB2 fraction and the MMV alkaloid (12-methoxy-4-methylvoachalotine) were evaluated for their antimicrobial activities. T. catharinensis ethanol extract was effective against both strains of the dermatophyte Trichophyton rubrum at concentrations of 2.5 mg/mL (wild strain) and 1.25 mg/mL (mutant strain), while the EB2 fraction and MMV alkaloid showed a strong antifungal activity against wild and mutant strains with MIC values of <0.02 and 0.16 mg/mL, respectively. The EB2 fraction showed a strong antibacterial activity against ATCC strains of S. aureus, S. epidermidis, E. coli and P. aeruginosa with MICs from <0.02 to 0.04 mg/mL, as well as against resistant clinical isolates species of Enterococcus sp, Klebsiella oxytoca, Citrobacter, K. pneumoniae, P. mirabilis, S. aureus, S. epidermidis, E. coli and P. aeruginosa with MIC values ranging from 0.04 to 0.08 mg/mL. The MMV alkaloid presented a MIC of 0.16 mg/mL against the strains of S. aureus and E. coli ATCC. For the resistant clinical isolates Enterococcus sp, Citrobacter, S. aureus, S. epidermidis, E. coil and P. aeruginosa the MIC of MMV ranged from 0.08 to 0.31 mg/mL. The chromatography analysis of the EB2 fraction revealed the presence of indole alkaloids, including MMV, possibly responsible for the observed antimicrobial activity.
Resumo:
Chemical investigations of some Stephania species native to Australia and reportedly employed by Aboriginal people as therapeutic agents. are described. The alkaloids from the forest vines Stephania bancroftii F.M. Bailey and S. aculeata F.M. Bailey (Menispermaceae) have been isolated and characterised. The major alkaloids in the tuber of the former species are (-)-tetra-hydropalmatine and (-)-stephanine, whereas these are minor components in the leaves, from which a C-7 hydroxylated aporphine has been identified. The major tuber alkaloids in S. aculcata are (+)-laudanidine, and the morphinoid, (-)-amurine, whose absolute stereochemistry has been established by X-ray structural analysis of the methiodide derivative. No significant levels of alkaloids were detected in S. japonica. Complete and unambiguous H-1 and C-13 NMR data are presented for these alkaloids. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
[GRAPHICS] Rapid access to the ABCE ring system of the C-20 diterpene alkaloids was achieved by silver(I)-promoted intramolecular Friedel-Crafts arylation of a functional group-specific 5-bromo-3-azabicyclo[3.3.1]nonane derivative.
Resumo:
Nine β-carboline alkaloids were synthetized and screened for antibiotic activity. Six of the compounds testes showed inhibitory activity against one or more of the microorganisms assayed.
Resumo:
Dissertação de mestrado em Biologia Molecular, Biotecnologia e Bioempreendedorismo em Plantas