950 resultados para fotocatalisi, TiO2, XANES, EXAFS, Micro-Raman, SEM, XRD
Resumo:
Il TiO2 è probabilmente il fotocatalizzatore maggiormente studiato in letteratura a partire già dagli anni settanta. Le applicazioni più rilevanti dei dispositivi fotocatalitici sono in campo ambientale (depurazione delle acque da inquinanti quali coloranti, microbatteri e residui metallici) e nella produzione di "solar fuel" (combustibili solari), fra questi l'idrogeno. L'idrogeno come vettore energetico è eco-compatibile e può essere utilizzato come carburante il cui prodotto di scarto è vapor d'acqua. Il biossido di titanio è uno dei materiali più promettenti per la costruzione di celle fotocatalitiche, grazie alla sua biocompatibilità e resistenza alla corrosione in ambiente acquoso. Il limite principale di questo materiale è legato allo scarso assorbimento nel visibile dovuto al band gap troppo elevato (circa 3.2 eV). Fra le varie strategie per superare questo problema, è stato mostrato che opportuni droganti permettono di incrementare la "Visible Light Activity", portando ai cosiddetti fotocatalizzatori di 2a generazione. I droganti più promettenti sono il vanadio e l'azoto che possono essere utilizzati singolarmente o in co-doping. L'inserimento di questi materiali nella matrice di TiO2 porta a un notevole miglioramento dei dispositivi abbassando il valore di band gap e permettendo un maggiore assorbimento nello spettro solare. Scopo di questa tesi è lo studio dei processi di crescita di film nanoparticellari di TiO2 drogato con vanadio. La tecnica di crescita usata è la Condensazione in Gas Inerte (IGC), mentre per l'indagine di morfologia e composizione ci si è serviti della microscopia elettronica. Con l'ausilio della diffrazione di raggi X è stato possibile controllare lo stato di cristallizzazione e determinare a quali temperature di trattamento in atmosfera ossidante avviene quest'ultima. Tramite le misure micro-Raman effettuate presso i laboratori dell'Università di Trento è stato possibile monitorare l'andamento della cristallizzazione di campioni depositati con parametri di evaporazione differenti (presenza di ossigeno o meno nell'atmosfera di evaporazione), evidenziando un maggior controllo sulla fase cristallina ottenuta per i campioni cresciuti in atmosfera ricca di ossigeno. Sono state effettuate analisi strutturali avanzate presso i laboratori ESRF di Grenoble, dove sono state portate avanti misure di assorbimento di raggi X di tipo EXAFS e XANES sulla soglia del titanio e del vanadio, evidenziando il carattere sostituzionale del vanadio all'interno della matrice di TiO2 e le diverse fasi di cristallizzazione.
Resumo:
The phase transition from the non-polar a-phase to the polar beta-phase of poly(vinylidene fluoride) (PVDF) has been investigated using micro-Raman spectroscopy, which is advantageous because it is a nondestructive technique. Films of alpha-PVDF were subjected to stretching under controlled rates at 80 degrees C, while the transition to P-PVDF was monitored by the decrease in the Raman band at 794 cm(-1) characteristic of the a-phase, along with the concomitant increase in the 839 cm-1 band characteristic of the P-phase. The alpha ->beta transition in our PVDF samples could be achieved even for the sample stretched to twice (2 X -stretched) the initial length and it did not depend on the stretching rate in the range between 2.0 and 7.0 mm/min. These conclusions were corroborated by differential scanning calorimetry (DSC) and X-ray diffraction experiments for PVDF samples processed under the same conditions as in the Raman scattering measurements. Poling with negative corona discharge was found to affect the a-PVDF morphology, improving the Raman bands related to this crystalline phase. This effect is minimized for films stretched to higher ratios. Significantly, corona-induced effects could not be observed with the other experimental techniques, i.e., X-ray diffraction and infrared spectroscopy.
Resumo:
In this work, we investigated the formation of porous silica matrix obtained by hydrothermal treatment under saturated steam condition from Pyrex (R) glass. This investigation was carried out by scanning electron microscopy (SEM), infrared spectroscopy (IR), X-ray powder diffractometry (XRD) and Raman microscopy. We observed the presence of connected and homogeneously distributed pores in a non-crystalline silica phase and a detectable interface between silica and remnant glass phases resulting in a framework similar to asymmetric membranes. The results indicate that the process of phase separation takes place at lower temperature than that of glass-transition on the surface of the glass phase. Essential reaction between water and silica at supercritical condition together with the formation and leaching of soluble phase contribute to obtain porous silica matrix, (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
Among the many methods developed for the synthesis of titanium dioxide, cathodic electrosynthesis has not received much attention because the resulting amorphous oxy-hydroxide matrix demands a further thermal annealing step to be transformed into crystalline titania. However, the possibility of filling deep recessed templates by the control of the solidliquid interface makes it a potentially suitable technique for the fabrication of porous scaffolds for photovoltaics and photocatalysis. Furthermore, a careful control of the crystallization process enables the growth of larger grains with lower density of grain boundaries, which act as electron traps that slow down electronic transport and promote charge recombination. In this report, well crystallized titania deposits were obtained by thermal annealing of amorphous deposits fabricated by cathodically assisted electrosynthesis on indium-tin oxide (ITO)substrates. The combined use of Raman spectroscopy and X-ray diffraction showed that the crystallization process is more intricate than previously assumed. It is shown that the amorphous matrix evolves into a rutile-free mixture of brookite and anatase at temperatures as low as 200 degrees C that persists up to 800 degrees C, when pure anatase dominates. The amount of brookite in the brookiteanatase mixture reaches a maximum at 400 degrees C. This very simple method for obtaining a brookiteanatase mixture and the ability to tune their proportions by thermal annealing is a promising alternative whose potential for solar cells and photocatalysis deserves a careful evaluation. Copyright (C) 2011 John Wiley & Sons, Ltd.
Effect of Al content on the structure of Al-substituted goethite : a micro-Raman spectroscopic study
Resumo:
The characterization of X-ray diffraction, X-ray fluorescence, and field emission scanning electron microscope were used to confirm the successful preparation of Al-substituted goethite with different Al content. The micro-Raman spectroscopy was utilized to investigate the effect of Al content on the goethite lattice. The results show that all the feature bands of goethite shifted to high wavenumbers after the occurrence of Al substitution for Fe in the structure of goethite. The shift of wavenumber shows a good linear relationship as a function of increasing Al content especially for the band at 299 cm−1 (R2 = 0.9992). The in situ Raman spectroscopy of thermally treated goethite indicated that the Al substitution not only hinders the transformation of goethite, but also retarded the crystallization of thermally formed hematite. All the results indicated that Raman spectrum displayed an excellent performance in characterizing Al-substituted goethite, which implied the promising application in other substituted metal oxides or hydroxides.
Resumo:
Micro-Raman imaging of the distribution of Te precipitates in CdZnTe crystals in different phases is reported. For the normal phase of Te precipitates, the Raman modes appear centered around 121(A1), 141(E)/TO(CdTe) cm−1 and a weak mode around 92(E) cm−1 in CdZnTe indicating the presence of trigonal lattice of Te. Under high pressure phase, the volume of Te precipitates collapses, giving more bond energy resulting in the blueshift of the corresponding Raman bands. Also, the spatial distribution of the area ratio of 121 to 141 cm−1 Raman modes is used to quantify Te precipitates. Further, near-infrared microscopy images support these results.
Resumo:
Nanoindentation studies on Ge15Te85-xInx glasses indicate that the hardness and elastic modulus of these glasses increase with indium concentration. While a pronounced plateau is seen in the elastic modulus in the composition range 3 <= x <= 7, the hardness exhibits a change in slope at compositions x = 3 and x = 7. Also, the density exhibits a broad maximum in this composition range. The observed changes in the mechanical properties and density are clearly associated with the thermally reversing window in Ge15Te85-xInx glasses in the composition range 3 <= x <= 7. In addition, a local minimum is seen in density and hardness around x = 9, the chemical threshold of the system. Further, micro-Raman studies reveal that as-quenched Ge15Te85-xInx samples exhibit two prominent peaks, at 123 cm(-1) and 155 cm(-1). In thermally annealed samples, the peaks at 120 cm(-1) and 140 cm(-1), which are due to crystalline Te, emerge as the strongest peaks. The Raman spectra of polished samples are similar to those of annealed samples, with strong peaks at 123 cm(-1) and 141 cm(-1). The spectra of lightly polished samples outside the thermally reversing window resemble those of thermally annealed samples; however, the spectra of glasses with compositions in the thermally reversing window resemble those of as-quenched samples. This observation confirms the earlier idea that compositions in the thermally reversing window are non-aging and are more stable. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The Semiconductor Quantum Well (QW) microtubes have been fabricated by strain-induced self assembling technique. Three types of multilayer structures have consisted of GaAs/InxGa1-xAs strained layers containing with various thickness of Monolayers of (GaAs/AlGaAs) QW were grown by Varian Gen II Molecular Beam Epitaxy (MBE) on the GaAs (100) substrate. The shape of the rolled up microtubes provide a clear idea about the formation of three dimensional micro- and nanostructures. Micro-Raman and photoluminescence (PL) studies were performed to the QW microtubes and as compared with their grown area on the GaAs substrate. The results of Raman spectra show the frequency shift of phonon modes measured in tube and compared with the grown area due to residual strain. The PL peaks of the microtube were red-shifted due to the strain effect and transition of bandgap from Type-II to Type-I. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
The stress states in Si particles of cast Al-Si based alloys depend on its morphology and the heat treatment given to the alloy. The Si particles fracture less on modification and fracture more in the heat treated condition. An attempt has been made in this work to study the effect of heat treatment and Si modification on the stress states of the particles. Such understanding will be valuable for predicting the ductility of the alloy. The stress states of Si particles are estimated by Raman technique and compared with the microstructure-based FEM simulations. Combination of Electron Back-Scattered Diffraction (EBSD) and frequency shift, polarized micro-Raman technique is applied to determine the stress states in Si particles with (111) orientations. Stress states are measured in the as-received state and under uniaxial compression. The residual stress, the stress in the elastic-plastic regime and the stress which causes fracture of the particles is estimated by Raman technique. FEM study demonstrates that the stress distribution is uniform in modified Si, whereas the unmodified Si shows higher and more complex stress states. The onset of plastic flow is observed at sharp corners of the particles and is followed by localization of strain between particles. Clustering of particles generates more inhomogeneous plastic strain in the matrix. Particle stress estimated by Raman technique is in agreement with FEM calculations. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
It is important to acquire the composition of Si1-xGex layer, especially that with high Ge content, epitaxied on Si substrate. Two nondestructive examination methods, double crystals X-ray diffraction (DCXRD) and micro-Raman measurement, were introduced comparatively to determine x value in Si1-xGex: layer, which show that while the two methods are consistent with each other when x is low, the results obtained from double crystals X-ray diffraction are not credible due to the large strain relaxation occurring in Si1-xGex layers when Ge content is higher than about 20%. Micro-Raman measurement is more appropriate for determining high Ge content than DCXRD.
Resumo:
Good quality hydrogenated protocrystalline silicon films were successfully prepared by radio frequency plasma enhanced chemical vapor deposition (PECVD) with various hydrogen dilution ratios (R = ([H-2]/[SiH4]) from 10 to 100). The photosensitivity of the films is up to 10(6) under the light intensity of 50mW.cm(-2). The microstructure of the films was studied by micro-region Raman scattering spectra at room temperature. The deconvolution of the Raman spectra by Gaussion functions shows that the films deposited under low hydrogen dilution ratios (R < 33) exhibit typical amorphous properties, while the films deposited under high hydrogen dilution ratios (R > 50) possess a diphasic structure, with increasing crystalline volume fraction with R. The size of the crystallites in the diphasic films is about 2.4 mm, which was deduced from the phonon confinement model. The intermediate range order of the silicon film increases with increasing hydrogen dilution ratio.
Resumo:
Three types of defects, namely defect I, defect 11, defect 111, in the 4H-SiC homoepilayer were investigated by micro-raman scattering measurement. These defects all originate from a certain core and are composed of (1) a wavy tail region, (11) two long tails, the so called comet and (111) three plaits. It was found that there are 3C-SiC inclusions in the cores of defect 11 and defect III and the shape of inclusion determines the type of defect II or defect III. If the core contains a triangle-shaped inclusion, the defect III would be formed; otherwise, the defect 11 was formed. No inclusion was observed in the core of the defect I. The mechanisms of these defects are discussed.