876 resultados para fenolic acids


Relevância:

60.00% 60.00%

Publicador:

Resumo:

No presente trabalho foram determinadas a composição química e a digestibilidade de diversas frações de Brachiaria brizantha e Brachiaria humidicola, após 70 dias de crescimento. O delineamento experimental foi inteiramente casualizado com cinco repetições para cada espécie. As plantas coletadas foram subdivididas nas frações apical, mediana e basal para as folhas e mediana e basilar para caules, de acordo com sua localização. Foram determinadas as concentrações de fibra em detergente neutro (FDN), proteína bruta (PB), lignina, ácido p_cumárico, ácido ferúlico e açúcares neutros (glicose, xilose e arabinose) e a digestibilidade in situ após 48 horas de período de incubação ruminal. As diferentes frações das espécies estudadas apresentam distinta composição química, cujos efeitos são observados na digestibilidade. A B. brizantha apresentou maiores concentrações de FDN no caule e PB nas folhas. Isto resultou em coeficientes de digestibilidade maiores em relação à B. humidicola. A diferença de digestibilidade entre caule e folhas e nas frações mais velhas pode estar relacionada ao tipo de condensação da lignina presente nos tecidos. Evidências na concentração e na proporção dos ácidos p_cumárico e ferúlico sugerem esta relação. A concentração de ácidos fenólicos esteve relacionada com a digestibilidade da matéria seca e a lignina com a digestibilidade da FDN. A análise dos ácidos fenólicos pode se constituir em importante ferramenta para avaliar o grau de condensação da lignina na parede celular dos diferentes tecidos das plantas forrageiras. A concentração de açúcares neutros não apresentou um padrão definido na composição dos diferentes tecidos. A arabinose foi o único açúcar que apresentou relações com a digestibilidade da matéria seca e com a concentração de ácidos fenólicos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structures of two 1:1 proton-transfer red-black dye compounds formed by reaction of aniline yellow [4-(phenyldiazenyl)aniline] with 5-sulfosalicylic acid and benzenesulfonic acid, and a 1:2 nontransfer adduct compound with 3,5-dinitrobenzoic acid have been determined at either 130 or 200 K. The compounds are 2-(4-aminophenyl)-1-phenylhydrazin-1-ium 3-carboxy-4-hydroxybenzenesulfonate methanol solvate, C12H12N3+.C7H5O6S-.CH3OH (I), 2-(4-aminophenyl)-1-hydrazin-1-ium 4-(phenydiazinyl)anilinium bis(benzenesulfonate), 2C12H12N3+.2C6H5O3S-, (II) and 4-(phenyldiazenyl)aniline-3,5-dinitrobenzoic acid (1/2) C12H11N3.2C~7~H~4~N~2~O~6~, (III). In compound (I) the diaxenyl rather than the aniline group of aniline yellow is protonated and this group subsequently akes part in a primary hydrogen-bonding interaction with a sulfonate O-atom acceptor, producing overall a three-dimensional framework structure. A feature of the hydrogen bonding in (I) is a peripheral edge-on cation-anion association involving aromatic C--H...O hydrogen bonds, giving a conjoint R1/2(6)R1/2(7)R2/1(4)motif. In the dichroic crystals of (II), one of the two aniline yellow species in the asymmetric unit is diazenyl-group protonated while in the other the aniline group is protonated. Both of these groups form hydrogen bonds with sulfonate O-atom acceptors and thee, together with other associations give a one-dimensional chain structure. In compound (III), rather than proton-transfer, there is a preferential formation of a classic R2/2(8) cyclic head-to-head hydrogen-bonded carboxylic acid homodimer between the two 3,5-dinitrobenzoic acid molecules, which in association with the aniline yellow molecule that is disordered across a crystallographic inversion centre, result in an overall two-dimensional ribbon structure. This work has shown the correlation between structure and observed colour in crystalline aniline yellow compounds, illustrated graphically in the dichroic benzenesulfonate compound.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structures of bis(guanidinium)rac-trans-cyclohexane-1,2-dicarboxylate, 2(CH6N3+) C8H10O4- (I), guanidinium 3-carboxybenzoate monohydrate CH6N3+ C8H5O4- . H2O (II) and bis(guanidinium) benzene-1,4-dicarboxylate trihydrate, 2(CH6N3+) C8H4O4^2- . 3H2O (III) have been determined and the hydrogen bonding in each examined. All three compounds form three-dimensional hydrogen-bonded framework structures. In anhydrous (I), both guanidinium cations give classic cyclic R2/2(8) N--H...O,O'(carboxyl) and asymmetric cyclic R1/2(6) hydrogen-bonding interactions while one cation gives an unusual enlarged cyclic interaction with O acceptors of separate ortho-related carboxyl groups [graph set R2/2(11)]. Cations and anions also associate across inversion centres giving cyclic R2/4(8) motifs. In the 1:1 guanidinium salt (II), the cation gives two separate cyclic R1/2(6) interactions, one with a carboxyl O-acceptor, the other with the water molecule of solvation. The structure is unusual in that both carboxyl groups give short inter-anion O...H...O contacts, one across a crystallographic inversion centre [2.483(2)\%A], the other about a two-fold axis of rotation [2.462(2)\%A] with a half-occupancy hydrogen delocalized on the symmetry element in each. The water molecule links the cation--anion ribbon structures into a three-dimensional framework. In (III), the repeating molecular unit comprises a benzene-1,4-dicarboxylate dianion which lies across a crystallographic inversion centre, two guanidinium cations and two water molecules of solvation (each set related by two-fold rotational symmetry), and a single water molecule which lies on a two-fold axis. Each guanidinium cation gives three types of cyclic interactions with the dianions: one R^1^~2~(6), the others R2/3(8) and R3/3(10) (both of these involving the water molecules), giving a three-dimensional structure through bridges down the b cell direction. The water molecule at the general site also forms an unusual cyclic R2/2(4) homodimeric association across an inversion centre [O--H...O, 2.875(2)\%A]. The work described here provides further examples of the common cyclic guanidinium cation...carboxylate anion hydrogen-bonding associations as well as featuring other less common cyclic motifs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structures of the anhydrous 1:1 proton-transfer compounds of isonipecotamide (piperidine-4-carboxamide) with the three isomeric mononitro-substituted benzoic acids and 3,5-dinitrobenzoic acid, namely 4-carbamoylpiperidinium 2-nitrobenzoate (I), 4-carbamoylpiperidinium 3-nitrobenzoate (II), 4-carbamoylpiperidinium 4-nitrobenzoate (III), (C6H13N2O+ C7H4NO4-) and 4-carbamoylpiperidinium 3,5-dinitrobenzoate (IV) (C6H13N2O+ C7H5N2O6-)respectively, have been determined at 200 K. All salts form hydrogen-bonded structures: three-dimensional in (I), two-dimensional in (II) and (III) and one-dimensional in (IV). Featured in the hydrogen bonding of three of these [(I), (II) and (IV)] is the cyclic head-to-head amide--amide homodimer motif [graph set R2/2~(8)] through a duplex N---H...O association, the dimer then giving structure extension via either piperidinium or amide H-donors and carboxylate-O and in some examples [(II) and (IV)], nitro-O atom acceptors. In (I), the centrosymmetric amide-amide homodimers are expanded laterally through N-H...O hydrogen bonds via cyclic R2/4(8) interactions forming ribbons which extend along the c cell direction. These ribbons incorporate the 2-nitrobenzoate cations through centrosymmetric cyclic piperidine N-H...O(carboxyl) associations [graph set R4/4(12)], giving inter-connected sheets in the three-dimensional structure. In (II) in which no amide-amide homodimer is present, duplex piperidinium N-H...O(amide) hydrogen-bonding homomolecular associations [graph set R2/2(14)] give centrosymmetric head-to-tail dimers. Structure extension occurs through hydrogen-bonding associations between both the amide H-donors and carboxyl and nitro O-acceptors as well as a three-centre piperidinium N-H...O,O'(carboxyl) cyclic R2/1(4) association giving the two-dimensional network structure. In (III), the centrosymmetric amide-amide dimers are linked through the two carboxyl O-atom acceptors of the anions via bridging piperidinium and amide N-H...O,O'...H-N(amide) hydrogen bonds giving the two-dimensional sheet structure which features centrosymmetric cyclic R4/4(12) associations. In (IV), the amide-amide dimer is also centrosymmetric with the dimers linked to the anions through amide N-H...O(nitro) interactions. The piperidinium groups extend the structure into one-dimensional ribbons via N-H...O(carboxyl) hydrogen bonds. The structures reported here further demonstrate the utility of the isonipecotamide cation in molecular assembly and highlight the efficacy of the cyclic R2/2(8) amide-amide hydrogen-bonding homodimer motif in this process and provide an additional homodimer motif type in the head-to-tail R2/2(14) association.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction. There are two binding sites on the β1-adrenoceptor (AR), β1H and β1L corresponding to high and low affinity binding sites respectively, which can be activated to cause cardiostimulation. Some β-blockers that block β1AR and β2ARs can activate β1LARs at higher concentrations than those required to cause blockade. The β2AR does not form a corresponding low affinity binding site and therefore we postulated that heterologous amino acids are responsible for the formation of β1LAR. Aim. To investigate whether heterologous amino acids of transmembrane domain V (TMDV) of β1AR and β2ARs contribute to β1LAR. Methods. β1ARs, β2ARs and mutant β1ARs containing all (β1(β2TMDV)AR) or single amino acids of TMDV of the β2AR were prepared and stably expressed in Chinese Hamster Ovary cells. Concentration-effect curves for cyclicAMP accumulation were carried out for (-)-CGP12177 in the absence or presence of (-)-bupranolol. Results. The potencies (pEC50) of (-)-CGP12177 were β2AR (9.24 ± 0.14, n = 5), β1(V230I)AR (9.07 ± 0.07, n = 10), β1(β2TMDV)AR (8.86 ± 0.10, n = 15), β1(R222Q)AR (8.09 ± 0.29, n = 6), β1AR (8.00 ± 0.11, n = 11). The affinities (pKB) of (-)-bupranolol were β2AR (9.82 ± 0.52, n = 5), β1(V230I)AR (7.64 ± 0.12, n = 8), β1(β2TMV)AR (8.06 ± 0.17, n = 8), β1(R222Q)AR (7.33 ± 0.23, n = 5), β1AR (7.23 ± 0.23, n = 5). Discussion. The potency of (-)-CGP12177 was higher at β2AR than at β1AR consistent with activation through a low affinity site at the β1AR (β1LAR). The presence of V230 in β1AR accounted for the lower potency of (-)-CGP 12177. The affinity of (-)-bupranolol was lower at β1AR compared to β2AR. The presence of V230 in β1AR accounted in part for the lower affinity. In conclusion TMDV of the β1AR contributes in part to the low affinity binding site of β1AR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are two binding sites on the β1-adrenoceptor (AR), β1H and β1L corresponding to high and low affinity binding sites respectively, which can be activated to cause cardiostimulation (reviewed Kaumann and Molenaar, 2008). Some β-blockers that block β1AR and β2ARs can activate β1LARs at higher concentrations than those required to cause blockade. The β2AR does not form a corresponding low affinity binding site (Baker et al 2002) and therefore we postulated that heterologous amino acids are responsible for the formation of β1LAR. Our aim was to investigate whether heterologous amino acids of transmembrane domain V (TMDV) of β1AR and β2ARs contribute to β1LAR. β1ARs, β2ARs and mutant β1ARs containing all (β1(β2TMDV)AR) or single amino acids of TMDV of the β2AR were prepared and stably expressed in Chinese Hamster Ovary cells. Concentration-effect curves for cyclicAMP accumulation were carried out for (-)-CGP12177 or (-)-isoprenaline in the absence or presence of (-)-bupranolol. _______________________________________________________________________ (-)-CGP 12177 (-)-Bupranolol affinity (pKB) pEC50 vs (-)-CGP 12177 vs (-)-isoprenaline _______________________________________________________________________ β1AR 8.00 ± 0.11 (11) 7.23 ± 0.23 (5) 9.52 ± 0.28 (5) β2AR (high density) 9.24 ± 0.14 (5) 9.82 ± 0.52 (8) xPaulxxxxxxx β2AR (low density) no effect β1(β2TMV)AR 8.86 ± 0.10 (15) 8.06 ± 0.17 (8) 9.08 ± 0.22 (6) β1(V230I)AR 9.07 ± 0.07 (10) 7.64 ± 0.12 (8) 9.36 ± 0.28 (9) β1(R222Q)AR 8.09 ± 0.29 (6) 7.33 ± 0.23 (5) 9.36 ± 0.08 (6) β1(V230A)AR 7.59 ± 0.09 (6) 7.32 ± 0.24 (4) 8.62 ± 0.18 (5) _______________________________________________________________________ The potency of (-)-CGP12177 was higher at β2AR than at β1AR consistent with activation through a low affinity site at the β1AR (β1LAR) but not β2AR. The presence of V230 in β1AR accounted for the lower potency of (-)-CGP 12177. The affinity of (-)-bupranolol at β1AR and mutants was higher when determined with (-)-isoprenaline than with (-)-CGP 12177. The affinity of (-)-bupranolol determined against (-)-CGP 12177 was lower at β1AR compared to β2AR. The presence of V230 in β1AR accounted in part for the lower affinity. In conclusion V230 of the β1AR contributes in part to the low affinity binding site of β1AR. Baker JG, Hall IP, Hill SJ (2002). Pharmacological characterization of CGP12177 at the human β2-adrenoceptor. Br J Pharmacol 137, 400−408 Kaumann AJ, Molenaar P (2008) The low-affinity site of the β1-adrenoceptor and its relevance to cardiovascular pharmacology. Pharmacol Ther 118, 303-336

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structures of the 1:1 proton-transfer compounds of isonipecotamide (4-piperidinecarboxamide) with 4-nitrophthalic acid, 4-carbamoylpiperidinium 2-carboxy-4-nitrobenzoate, C6H13N2O8+ C8H4O6- (I), 4,5-dichlorophthalic acid, 4-carbamoylpiperidinium 2-carboxy-4,5-dichlorobenzoate, C6H13N2O8+ C8H3Cl2O4- (II) and 5-nitroisophthalic acid, 4-carbamoylpiperidinium 3-carboxy-5-nitrobenzoate, C6H13N2O8+ C8H4O6- (III) as well as the 2:1 compound with terephthalic acid, bis(4-carbamoylpiperidinium)benzene-1,2-dicarboxylate dihydrate, 2(C6H13N2O8+) C8H4O42- . 2H2O (IV)have been determined at 200 K. All salts form hydrogen-bonded structures, one-dimensional in (II) and three-dimensional in (I), (III) and (IV). In (I) and (III) the centrosymmetric R2/2(8) cyclic amide-amide association is found while in (IV) several different types of water-bridged cyclic associations are present [graph sets R2/4(8), R3/4(10), R4/4(12), R3/3(18) and R4/6(22)]. The one-dimensional structure of (I), features the common 'planar' hydrogen 4,5-dichlorophthalate anion together with enlarged cyclic R3/3(13) and R3/4(17) associations. With the structures of (I) and (III) the presence of head-to-tail hydrogen phthalate chain substructures is found. In (IV) head-to-tail primary cation-anion associations are extended longitudinally into chains through the water-bridged cation associations and laterally by piperidinium N-H...O(carboxyl) and water O-H...O(carboxyl) hydrogen bonds. The structures reported here further demonstrate the utility of the isonipecotamide cation as a synthon for the generation of stable hydrogen-bonded structures. An additional example of cation--anion association with this cation is also shown in the asymmetric three-centre piperidinium N-H...O,O'(carboxyl) interaction in the first-reported structure of a 2:1 isonipecotamide-carboxylate salt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structures of two hydrated proton-transfer compounds of 4-piperidinecarboxamide (isonipecotamide) with the isomeric heteroaromatic carboxylic acids indole-2-carboxylic acid and indole-3-carboxylic acid, namely 4-carbamoylpiperidinium indole-2-carboxylate dihydrate (1) and 4-carbamoylpiperidinium indole-3-carboxylate hemihydrate (2) have been determined at 200 K. Crystals of both 1 and 2 are monoclinic, space groups P21/c and P2/c respectively with Z = 4 in cells having dimensions a = 10.6811(4), b = 12.2017(4), c = 12.5456(5) Å, β = 96.000(4)o (1) and a = 15.5140(4), b = 10.2908(3), c = 9.7047(3) Å, β = 97.060(3)o (2). Hydrogen-bonding in 1 involves a primary cyclic interaction involving complementary cation amide N-H…O(carboxyl) anion and anion hetero N-H…O(amide) cation hydrogen bonds [graph set R22(9)]. Secondary associations involving also the water molecules of solvation give a two-dimensional network structure which includes weak water O-H…π interactions. In the three-dimensional hydrogen-bonded structure of 2, there are classic centrosymmetric cyclic head-to-head hydrogen-bonded amide-amide interactions [graph set R22(8)] as well as lateral cyclic amide-O linked amide-amide extensions [graph set R24(8)]. The anions and the water molecule, which lies on a twofold rotation axis, are involved in secondary extensions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colour is one of the most important parameters in sugar quality and its presence in raw sugar plays a key role in the marketing strategy of sugar industries worldwide. This study investigated the degradation of a mixture of colour precursors using the Fenton oxidation process. These colour precursors are caffeic acid, p–coumaric acid and ferulic acid, which are present in cane juice. Results showed that with a Fe(II) to H2O2 molar ratio of 1:15 in an aqueous system at 25 °C, 77% of the total phenolic acid content was removed at pH 4.72. However, in a synthetic juice solution which contained 13 mass % sucrose (35 °C, pH 5.4), only 60% of the total phenolic acid content was removed.