983 resultados para exclusion process
Resumo:
We consider an exclusion process on a ring in which a particle hops to an empty neighboring site with a rate that depends on the number of vacancies n in front of it. In the steady state, using the well-known mapping of this model to the zero-range process, we write down an exact formula for the partition function and the particle-particle correlation function in the canonical ensemble. In the thermodynamic limit, we find a simple analytical expression for the generating function of the correlation function. This result is applied to the hop rate u(n) = 1 + (b/n) for which a phase transition between high-density laminar phase and low-density jammed phase occurs for b > 2. For these rates, we find that at the critical density, the correlation function decays algebraically with a continuously varying exponent b - 2. We also calculate the two-point correlation function above the critical density and find that the correlation length diverges with a critical exponent nu = 1/(b - 2) for b < 3 and 1 for b > 3. These results are compared with those obtained using an exact series expansion for finite systems.
Resumo:
We consider the nonabelian sandpile model defined on directed trees by Ayyer et al. (2015 Commun. Math. Phys. 335 1065). and restrict it to the special case of a one-dimensional lattice of n sites which has open boundaries and disordered hopping rates. We focus on the joint distribution of the integrated currents across each bond simultaneously, and calculate its cumulant generating function exactly. Surprisingly, the process conditioned on seeing specified currents across each bond turns out to be a renormalised version of the same process. We also remark on a duality property of the large deviation function. Lastly, all eigenvalues and both Perron eigenvectors of the tilted generator are determined.
Resumo:
We present a one-dimensional nonlocal hopping model with exclusion on a ring. The model is related to the Raise and Peel growth model. A nonnegative parameter u controls the ratio of the local backwards and nonlocal forwards hopping rates. The phase diagram, and consequently the values of the current, depend on u and the density of particles. In the special case of half-lling and u = 1 the system is conformal invariant and an exact value of the current for any size L of the system is conjectured and checked for large lattice sizes in Monte Carlo simulations. For u > 1 the current has a non-analytic dependence on the density when the latter approaches the half-lling value.
Resumo:
We introduce a class of distance-dependent interactions in an accelerated exclusion process inspired by the observation of transcribing RNA polymerase speeding up when “pushed” by a trailing one. On a ring, the accelerated exclusion process steady state displays a discontinuous transition, from being homogeneous (with augmented currents) to phase segregated. In the latter state, the holes appear loosely bound and move together, much like a train. Surprisingly, the current-density relation is simply J=1-ρ, signifying that the “hole train” travels with unit velocity.
Resumo:
We introduce a class of distance-dependent interactions in an accelerated exclusion process inspired by the observation of transcribing RNA polymerase speeding up when “pushed” by a trailing one. On a ring, the accelerated exclusion process steady state displays a discontinuous transition, from being homogeneous (with augmented currents) to phase segregated. In the latter state, the holes appear loosely bound and move together, much like a train. Surprisingly, the current-density relation is simply J=1-ρ, signifying that the “hole train” travels with unit velocity.
Resumo:
When particle flux is regulated by multiple factors such as particle supply and varying transport rate, it is important to identify the respective dominant regimes. We extend the well-studied totally asymmetric simple exclusion model to investigate the interplay between a controlled entrance and a local defect site. The model mimics cellular transport phenomena where there is typically a finite particle pool and nonuniform moving rates due to biochemical kinetics. Our simulations reveal regions where, despite an increasing particle supply, the current remains constant while particles redistribute in the system. Exploiting a domain wall approach with mean-field approximation, we provide a theoretical ground for our findings. The results in steady-state current and density profiles provide quantitative insights into the regulation of the transcription and translation process in bacterial protein synthesis.
Resumo:
In an accelerated exclusion process (AEP), each particle can "hop" to its adjacent site if empty as well as "kick" the frontmost particle when joining a cluster of size ℓ⩽ℓ_{max}. With various choices of the interaction range, ℓ_{max}, we find that the steady state of AEP can be found in a homogeneous phase with augmented currents (AC) or a segregated phase with holes moving at unit velocity (UV). Here we present a detailed study on the emergence of the novel phases, from two perspectives: the AEP and a mass transport process (MTP). In the latter picture, the system in the UV phase is composed of a condensate in coexistence with a fluid, while the transition from AC to UV can be regarded as condensation. Using Monte Carlo simulations, exact results for special cases, and analytic methods in a mean field approach (within the MTP), we focus on steady state currents and cluster sizes. Excellent agreement between data and theory is found, providing an insightful picture for understanding this model system.
Resumo:
Exclusion processes on a regular lattice are used to model many biological and physical systems at a discrete level. The average properties of an exclusion process may be described by a continuum model given by a partial differential equation. We combine a general class of contact interactions with an exclusion process. We determine that many different types of contact interactions at the agent-level always give rise to a nonlinear diffusion equation, with a vast variety of diffusion functions D(C). We find that these functions may be dependent on the chosen lattice and the defined neighborhood of the contact interactions. Mild to moderate contact interaction strength generally results in good agreement between discrete and continuum models, while strong interactions often show discrepancies between the two, particularly when D(C) takes on negative values. We present a measure to predict the goodness of fit between the discrete and continuous model, and thus the validity of the continuum description of a motile, contact-interacting population of agents. This work has implications for modeling cell motility and interpreting cell motility assays, giving the ability to incorporate biologically realistic cell-cell interactions and develop global measures of discrete microscopic data.
Resumo:
We study MCF-7 breast cancer cell movement in a transwell apparatus. Various experimental conditions lead to a variety of monotone and nonmonotone responses which are difficult to interpret. We anticipate that the experimental results could be caused by cell-to-cell adhesion or volume exclusion. Without any modeling, it is impossible to understand the relative roles played by these two mechanisms. A lattice-based exclusion process random-walk model incorporating agent-to-agent adhesion is applied to the experimental system. Our combined experimental and modeling approach shows that a low value of cell-to-cell adhesion strength provides the best explanation of the experimental data suggesting that volume exclusion plays a more important role than cell-to-cell adhesion. This combined experimental and modeling study gives insight into the cell-level details and design of transwell assays.
Resumo:
Diffusive transport is a universal phenomenon, throughout both biological and physical sciences, and models of diffusion are routinely used to interrogate diffusion-driven processes. However, most models neglect to take into account the role of volume exclusion, which can significantly alter diffusive transport, particularly within biological systems where the diffusing particles might occupy a significant fraction of the available space. In this work we use a random walk approach to provide a means to reconcile models that incorporate crowding effects on different spatial scales. Our work demonstrates that coarse-grained models incorporating simplified descriptions of excluded volume can be used in many circumstances, but that care must be taken in pushing the coarse-graining process too far.
Resumo:
We consider the dynamics of cargo driven by a collection of interacting molecular motors in the context of ail asymmetric simple exclusion process (ASEP). The model is formulated to account for (i) excluded-volume interactions, (ii) the observed asymmetry of the stochastic movement of individual motors and (iii) interactions between motors and cargo. Items (i) and (ii) form the basis of ASEP models and have already been considered to study the behavior of motor density profile [A. Parmeggiani. T. Franosch, E. Frey, Phase Coexistence in driven one-dimensional transport, Phys. Rev. Lett. 90 (2003) 086601-1-086601-4]. Item (iii) is new. It is introduced here as an attempt to describe explicitly the dependence of cargo movement on the dynamics of motors in this context. The steady-state Solutions Of the model indicate that the system undergoes a phase transition of condensation type as the motor density varies. We study the consequences of this transition to the behavior of the average cargo velocity. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
An integrable asymmetric exclusion process with impurities is formulated. The model displays the full spectrum of the stochastic asymmetric XXZ chain plus new levels. We derive the Bethe equations and calculate the spectral gap for the totally asymmetric diffusion at half filling. While the standard asymmetric exclusion process without impurities belongs to the KPZ universality class with an exponent 3/2, our model has a scaling exponent 5/3.
Resumo:
Experimental observations of cell migration often describe the presence of mesoscale patterns within motile cell populations. These patterns can take the form of cells moving as aggregates or in chain-like formation. Here we present a discrete model capable of producing mesoscale patterns. These patterns are formed by biasing movements to favor a particular configuration of agent–agent attachments using a binding function f(K), where K is the scaled local coordination number. This discrete model is related to a nonlinear diffusion equation, where we relate the nonlinear diffusivity D(C) to the binding function f. The nonlinear diffusion equation supports a range of solutions which can be either smooth or discontinuous. Aggregation patterns can be produced with the discrete model, and we show that there is a transition between the presence and absence of aggregation depending on the sign of D(C). A combination of simulation and analysis shows that both the existence of mesoscale patterns and the validity of the continuum model depend on the form of f. Our results suggest that there may be no formal continuum description of a motile system with strong mesoscale patterns.
Resumo:
Cell invasion involves a population of cells which are motile and proliferative. Traditional discrete models of proliferation involve agents depositing daughter agents on nearest- neighbor lattice sites. Motivated by time-lapse images of cell invasion, we propose and analyze two new discrete proliferation models in the context of an exclusion process with an undirected motility mechanism. These discrete models are related to a family of reaction- diffusion equations and can be used to make predictions over a range of scales appropriate for interpreting experimental data. The new proliferation mechanisms are biologically relevant and mathematically convenient as the continuum-discrete relationship is more robust for the new proliferation mechanisms relative to traditional approaches.