183 resultados para electrothermal atomization
Resumo:
A água superficial para posterior consumo humano, tem de passar por diversas etapas de tratamento, de forma a dar cumprimento aos requisitos da legislação vigente, decreto-Lei n.º 306/2007 de 27 de Agosto. Como resultado do referido tratamento produzem-se resíduos, nomeadamente, as lamas de clarificação de água. De acordo com a estratégia da União Europeia, a deposição em aterro destas lamas apenas deverá ser efectuada em situações excepcionais ou temporárias. A procura de uma solução ambientalmente mais aceitável para o destino final a atribuir a estas lamas de clarificação de água deverá ser, um dos objectivos das empresas abastecedoras de água para consumo humano. Com o intuito de verificar a possibilidade de utilização das lamas produzidas nas Estações de Tratamento de Água (ETA) em solos agrícolas, realizaram-se testes ecotoxicológicos para avaliar a capacidade de germinação de sementes de alface (Lactuca sativa). Foram igualmente realizadas determinações de alguns metais nos lixiviados, por espectrofotometria de absorção atómica com atomização por chama e por Câmara de grafite. O cádmio e o chumbo por imposição da legislação aplicável aos géneros alimentícios, Regulamento (CE) 1881/2006 de 19 de Dezembro e o alumínio e o ferro por estarem presentes nos tratamentos de algumas das águas superficiais em estudo. As lamas estudadas eram provenientes de ETA com captação de água superficial em rios e albufeiras distintos do norte de Portugal, com utilização de tratamentos também diferentes. Os resultados obtidos com os lixiviados das lamas provenientes das ETA com captações dos rios Ferreira, Ferro e Vizela e Tâmega, evidenciaram inibição da germinação para algumas das diluições testadas. No entanto, não se observou qualquer efeito tóxico para as lamas das ETA com captações da albufeira do Alto Rabagão e dos rios Rabaçal, Douro e Paiva. Dos metais alumínio, cádmio, ferro e chumbo determinados nos lixiviados, apenas o alumínio estava acima do limite de detecção. No entanto, não foi possível estabelecer qualquer correlação entre o tratamento aplicado à água superficial nas várias ETA com a concentração do alumínio nem com os resultados dos ensaios ecotoxicológicos. Não obstante, parece haver relação entre a proximidade geográfica do local de captação de água e os resultados dos bioensaios.
Resumo:
Actualmente tem-se verificado um grande aumento na procura e a utilização de produtos naturais contendo extractos de algas, com fins medicinais, sendo cada vez maior a diversidade de oferta desses produtos, vendidos em ervanária e afins. A bibliografia tem mostrado que as algas têm capacidade de acumulação de metais pesados. As algas, sendo organismos aquáticos, estão sujeitas a contaminações dos locais (não identificados) de onde provêm. O controlo e fiscalização para estes produtos é praticamente inexistente. O objectivo deste projecto foi o desenvolvimento de metodologias analíticas com vista à quantificação de metais em infusões de chás e ervas aromáticas. Foram analisadas 9 amostras: uma de chá verde, uma de chá preto, uma infusão de lima, uma de camomila, uma mistura de chá com ervas e quatro misturas contendo algas. A espectrofotometria de absorção atómica é o método de referência para a análise de metais. Neste trabalho foi utilizado um espectrofotómetro de absorção atómica com fonte de radiação contínua e monocromador de alta resolução. Sendo esta uma tecnologia inovadora foi necessário desenvolver metodologias para os métodos de análise. A atomização em chama foi a técnica utilizada para a quantificação do cálcio, potássio, magnésio, manganês e sódio. A atomização electrotérmica foi usada para o cádmio, cobalto, crómio, cobre, níquel e chumbo. Tendo em conta os limites legislados (Decreto-Lei Nº306/2007 de 27 de Agosto) obtiveram-se teores preocupantes para o níquel (iguais ou superiores ao limite legislado) em todas as amostras analisadas e para o manganês em duas das amostras (chá verde e chá preto). Todas as amostras contendo algas apresentaram teores de Ca, Mg e Na superiores aos das restantes. Para os restantes elementos não foi possível relacionar as concentrações com a composição das infusões, em particular a presença de algas.
Resumo:
A fast and direct method for the determination of Cr in milk and cane sugar suspensions using graphite furnace atomic absorption spectrometry with Zeeman-effect background correction is described. No sample pre-treatment was necessary, minimizing the risk of contamination. The concentration of chromium in cane sugar was evaluated using Cr reference solutions prepared in 1% v/v HNO3 solution. The milk samples were introduced into the furnace with a mixture of amines for avoiding the autosampler blockage and foaming of milk. Chromium determination in milk was based on the standard additions method (SAM). The limit of detection and characteristic mass for cane sugar sample (30 muL) were 0,13 ng/ml and 4,3 pg, and for milk sample (10 muL) were 0,23 ng/ml and 7,8 pg, respectively. The graphite tube lifetime was 300 firings for sugar-cane sample and 100 firings for milk sample. The heating program was implemented in 68 s.
Resumo:
The toxicity of the major As species present in the environment justifies the effort for quantifying the element in environmental organic samples, which can vary from animal and vegetal tissues to coal and industrial residues. This paper comments about the applicability of the O2 bomb digestion, as a general procedure for all environmental organic materials. A rapid and straightforward method is suggested, which consists in burning the sample in the bomb at high O2 pressure, dissolving the vapours in diluted HNO3 and determining As in the resulting solution by atomic absorption spectrometry with electrothermal atomization. The method was applied to certified materials and plant samples.
Resumo:
It is here discussed the development of a low cost analytical instrument with capacity for metals determination using atomic emission measurements in an electrothermal atomization system with a tungsten coil atomizer. The main goal was to show a new frontier for using this atomizer and to demonstrate that the simple instrumental arrangement here proposed has potential for portability and for solving analytical tasks related to metals determination. Atomic emission of calcium was selected for the adjustment of instrumental parameters and to evaluate the main characteristics of the lab-built instrument. Cobalt was determined in medicines and one alloy to demonstrate its feasibility.
Resumo:
This paper reports a method for the direct and simultaneous determination of Cr and Mn in alumina by slurry sampling graphite furnace atomic absorption spectrometry (SiS-SIMAAS) using niobium carbide (NbC) as a graphite platform modifier and sodium fluoride (NaF) as a matrix modifier. 350 mu g of Nb were thermally deposited on the platform surface allowing the formation of NbC (mp 3500 degrees C) to minimize the reaction between aluminium and carbon of the pyrolytic platform, improving the graphite tube lifetime up to 150 heating cycles. A solution of 0.2 mol L(-1) NaF was used as matrix modifier for alumina dissolution as cryolite-based melt, allowing volatilization during pyrolysis step. Masses (c.a. 50 mg) of sample were suspended in 30 ml of 2.0% (v/v) of HNO(3). Slurry was manually homogenized before sampling. Aliquots of 20 mu l of analytical solutions and slurry samples were co-injected into the graphite tube with 20 mu l of the matrix modifier. In the best conditions of the heating program, pyrolysis and atomization temperatures were 1300 degrees C and 2400 degrees C, respectively. A step of 1000 degrees C was optimized allowing the alumina dissolution to form cryolite. The accuracy of the proposed method has been evaluated by the analysis of standard reference materials. The found concentrations presented no statistical differences compared to the certified values at 95% of the confidence level. Limits of detection were 66 ng g(-1) for Cr and 102 ng g(-1) for Mn and the characteristic masses were 10 and 13 pg for Cr and Mn, respectively.
Resumo:
In this present work a method for the determination of Ca, Fe, Ga, Na, Si and Zn in alumina (Al(2)O(3)) by inductively coupled plasma optical emission spectrometry (ICP OES) with axial viewing is presented. Preliminary studies revealed intense aluminum spectral interference over the majority of elements and reaction between aluminum and quartz to form aluminosilicate, reducing drastically the lifetime of the torch. To overcome these problems alumina samples (250 mg) were dissolved with 5 mL HCl + 1.5 mLH(2)SO(4) + 1.5 mL H(2)O in a microwave oven. After complete dissolution the volume was completed to 20 mL and aluminum was precipitated as Al(OH)(3) with NH(3) (by bubbling NH(3) into the solution up to a pH similar to 8, for 10 min). The use of internal standards (Fe/Be, Ga/Dy, Zn/In and Na/Sc) was essential to obtain precise and accurate results. The reliability of the proposed method was checked by analysis of alumina certified reference material (Alumina Reduction Grade-699, NIST). The found concentrations (0.037%w(-1) CaO, 0.013% w w(-1) Fe(2)O(3), 0.012%w w(-1)Ga(2)O(3), 0.49% w w(-1) Na(2)O, 0.014% w w(-1) SiO(2) and 0.013% w w(-1) ZnO) presented no statistical differences compared to the certified values at a 95% confidence level. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This work describes the evaluation of several parameters for the preparation of a tuna fish candidate as a reference material (RM) in order to measure the total As mass fraction by slurry sampling graphite furnace atomic absorption spectrometry (SLS-GF AAS) and slurry sampling hydride generation atomic absorption spectrometry (SLS-HG AAS). The main parameters investigated were the homogeneity, analyte segregation and composition during material production. For candidate RM preparation, tuna fish was collected at a local market, cleaned, freeze-dried and treated using different procedures as follows: (1) ground in a cutting mill and separated in different particle sizes (2) ground in cryogenic mill. The mass fraction of As in the cryogenically ground sample was (4.77 +/- A 0.19) mu g g(-1) for SLS-GF AAS and (4.61 +/- A 0.34) mu g g(-1) for SLS-HG AAS. The accuracy of the procedures was checked with tuna fish certified reference material (BCR 627) with recoveries of 102 and 94% for SLS-GF AAS and SLS-HG AAS, respectively. The homogeneity factor was calculated for different pretreatment procedures and for particle sizes in the range of 500-150 mu g, indicating good homogeneity, except for raw fish. There was no observed analyte segregation and no losses, no contamination and no changes in the microdistribution of material during preparation.
Resumo:
The use of internal standardization for simultaneous atomic absorption spectrometry (SIMAAS) was investigated for Cd and Pb determination in whole blood. The comparison of thermochemical and physicochemical parameters allowed the selection of Ag, Bi, and Tl as internal standard candidates. Correlation graphs, plotted from the normalized absorbance signals (n = 20) of internal standard (axis y) versus analyte ( axis x), precision and accuracy were used to select Ag as the most appropriate internal standard. Blood samples were diluted (1 + 9) with 0.11% (m/v) Triton X-100 + 1.1% (v/v) HNO3 + 0.28% (m/v) NH4H2PO4 + 10 mug L-1 Ag+. Pyrolysis and atomization temperatures for the optimized heating program were 550 and 1700 degreesC, respectively. Characteristic masses based on integrated absorbance were 1.68 +/- 0.01 pg for Cd and 30.3 +/- 0.1 pg for Pb. The detection limits (DL) were 0.095 +/- 0.001 mug L-1 and 0.86 +/- 0.01 mug L-1 for Cd and Pb, respectively. The mean RSD for all determinations was the same for Cd (13 +/- 9%) with or without Ag as internal standard ( IS). on the other hand, the use of Ag as IS improved the RSD for Pb from 3.6 +/- 4.0% to 2.2 +/- 2.0%. An effective contribution of the internal standard Ag was verified in the recoveries of spiked samples (0.5 mug L-1 Cd2+ and 5.0 mug L-1 Pb2+). The mean recoveries were 81 +/- 8% and 91 +/- 4% for Cd, and 80 +/- 11% and 93 +/- 6% for Pb without and with IS correction, respectively. This is the first application of IS for a simultaneous determination by SIMAAS.
Resumo:
A method has been developed for the direct simultaneous determination of Cd and Pb in white and red wine by electrothermal atomic absorption spectrometry (ET-AAS) using a transversely heated graphite tube atomizer (THGA) with longitudinal Zeeman-effect background correction. The thermal behavior of both analytes during pyrolysis and atomization stages were investigated in 0.028 mol l(-1) HNO3 and in 1 + 1 v/v diluted wine using mixtures of Pd(NO3)(2) + Mg(NO3)(2) and NH4H2PO4 + Mg(NO3)(2) as chemical modifiers. With 5 mug Pd + 3 mug Mg as the modifiers and a two-step pyrolysis (10 s at 400 degreesC and 10 s at 600 degreesC), the formation of carbonaceous residues inside the atomizer was avoided. For 20 mul of sample (wine + 0.056 mol l(-1) HNO3, 1 + 1, v/v) dispensed into the graphite tube, analytical curves in the 0.10-1.0 mug l(-1) Cd and 5.0-50 mug l(-1) Pb ranges were established. The characteristic mass was approximately 0.6 pg for Cd and 33 pg for Pb, and the lifetime of the tube was approximately 400 firings. The limits of detection (LOD) based on integrated absorbance (0.03 mug l(-1) for Cd, 0.8 mug l(-1) for Pb) exceeded the requirements of Brazilian Food Regulations (decree #55871 from Health Department), which establish the maximum permissible level for Cd at 200 mug l(-1) and for Pb at 500 mug l(-1). The relative standard deviations (n = 12) were typically < 8% for Cd and < 6% for Pb. The recoveries of Cd and Pb added to wine samples varied from 88 to 107% and 93 to 103%, respectively. The accuracy of the direct determination of Cd and Ph was checked for 10 table wines by comparing the results with those obtained for digested wine using single-element ET-AAS, which were in agreement at the 95% confidence level. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
The present investigation is the first part of an initiative to prepare a regional map of the natural abundance of selenium in various areas of Brazil, based on the analysis of bean and soil samples. Continuous-flow hydride generation electrothermal atomic absorption spectrometry (HG-ET AAS) with in situ trapping on an iridium-coated graphite tube has been chosen because of the high sensitivity and relative simplicity. The microwave-assisted acid digestion for bean and soil samples was tested for complete recovery of inorganic and organic selenium compounds (selenomethionine). The reduction of Se(VI) to Se(IV) was optimized in order to guarantee that there is no back-oxidation, which is of importance when digested samples are not analyzed immediately after the reduction step. The limits of detection and quantification of the method were 30 ng L(-1) Se and 101 ng L(-1) Se, respectively, corresponding to about 3 ng g(-1) and 10 ng g(-1), respectively, in the solid samples, considering a typical dilution factor of 100 for the digestion process. The results obtained for two certified food reference materials (CRM), soybean and rice, and for a soil and sediment CRM confirmed the validity of the investigated method. The selenium content found in a number of selected bean samples varied between 5.5 +/- 0.4 ng g(-1) and 1726 +/- 55 ng g(-1), and that in soil samples varied between 113 +/- 6.5 ng g(-1) and 1692 +/- 21 ng g(-1). (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The aim of this work is to propose a biomonitoring method for the simultaneous determination of Cd and Pb in whole blood by simultaneous electrothermal atomic absorption spectrometry for assessment of environmental levels. A volume of 200 mu L of whole blood was diluted in 500 mu L of 0.2% (w v(-1)) Triton(R) X-100 + 2.0% (v v(-1)) HNO3. Trichloroacetic acid was added for protein precipitation and the supernatant analyzed. A mixture of 250 mu g W + 200 mu g Rh as permanent and 2.0% (w v(-1)) NH4H2PO4 as co-injected modifiers were used. Characteristic masses and limits of detections (n = 20, 3s) for Cd and Pb were 1.26 and 33 pg and 0.026 mu g L-1 and 0.65 mu g L-1, respectively. Repeatability ranged from 1.8 to 6.8% for Cd and 1.2 to 1.7% for Pb. The trueness of method was checked by the analysis of three Reference Materials: Lyphocheck(R) Whole Blood Metals Control level 1 and Seronorm(TM) Trace Elements in Whole Blood levels 1 and 2. The found concentrations presented no statistical differences at the 95% confidence level. Blood samples from 40 volunteers without occupational exposure were analyzed and the concentrations ranged from 0.13 to 0.71 mu g L-1 (0.32 +/- 0.19 mu g L-1) for Cd and 9.3 to 56.7 mu g L-1 (25.1 +/- 10.8 mu g L-1) for Pb. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The interface and software for synchronous control of an autosampler and an electrothermal tungsten coil atomizer in atomic absorption spectrophotometry were developed. The control of the power supply, the trigger of the Read function of the spectrophotometer and the automatic operation of the autosampler was performed by software written in "TurboBasic". The system was evaluated by comparison of the repeatability of peak-height absorbances obtained in the atomization of lead by consecutive 10-µl injections of solutions (prepared in 0.2% v/v HNO3) using autosampler and manual sample introduction, and also by long term operation.
Resumo:
The atomization behavior of Au, Ag, Bi, Cd, Pb, and Sn from pyrolitic graphite coating (L'vov platform) with the use Pd and Mg solutions, and zirconium coated platform with the analytes in nitric acid 0.2% v/v and in ethanol was investigated. In ethanol medium, the sensitivity gain was three-fold for Bi and Cd using Zr as modifier. Without modifier, the ethanol medium is appropriate only for Au and Cd. In nitric acid medium, the Zr coated platform elevates sensitivity at least two-fold for Bi and Cd. The method was applied to the determination of Ag, Au and Bi of certified steel samples, after on-line preconcentration, sorption on a minicolumn filled with C-18 bonded to silica gel and elution with ethanol. The concentrations obtained agreed with the recommended values.
Resumo:
A method was developed for quantification of Cd and Pb in ethanol fuel by filter furnace atomic absorption spectrometry. Filter furnace was used to eliminate the need for chemical modification, to stabilize volatile analytes and to allow the application of short pyrolysis step. The determinations in samples were carried out against calibration solutions prepared in ethanol. Recovery tests were made in seven commercial ethanol fuel samples with values between 90 and 120%. Limits of detection were 0.1 µg L-1 for Cd and 0.3 µg L-1 for Pb. Certified water samples (APS 1071, APS 1033, NIST 1643d, NIST 1640) were also used to evaluate accuracy and recoveries from 86.8% to115% were obtained.