755 resultados para electrophoretic microchip


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, an antibiotic, lincomycin was determined in the urine sample by microchip capillary electrophoresis (CE) with integrated indium tin oxide (ITO) working electrode based on electrochemiluminescence (ECL) detection. This microchip CE-ECL system can be used for the rapid analysis of lincomycin within 40 s. Under the optimized conditions, the linear range was obtained from 5 to 100 muM with correlation coefficient of 0.998. The limit of detection (LOD) of 3.1 muM was obtained for lincomycin in the standard solution. We also applied this method to analyzing lincomycin in the urine matrix. The limit of detection of 9.0 muM was obtained. This method can determine lincomycin in the urine sample without pretreatment, which demonstrated that it is a promising method of detection of lincomycin in clinical and pharmaceutical area.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Inexpensive and permanently modified poly(methyl methacrylate)(PMMA) microchips were fabricated by an injection-molding process. A novel sealing method for plastic microchips at room temperature was introduced. Run-to-run and chip-to-chip reproducibility was good, with relative standard deviation values between 1-3% for the run-to-run and less than 2.1% for the chip-to-chip comparisons. Acrylonitrile-butadiene-styrene (ABS) was used as an additive in PMMA substrates. The proportions of PMMA and ABS were optimized. ABS may be considered as a modifier, which obviously improved some characteristics of the microchip, such as the hydrophilicity and the electro-osmotic flow (EOF). The detection limit of Rhodamine 6G dye for the modified microchip on the home-made microchip analyzer showed a dramatic 100-fold improvement over that for the unmodified PMMA chip. A detection limit of the order of 10(-20) mole has been achieved for each injected phiX-174/HaeIII DNA fragment with the baseline separation between 271 and 281 bp, and fast separation of 11 DNA restriction fragments within 180 seconds. Analysis of a PCR product from the tobacco ACT gene was performed on the modified microchip as an application example.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Our dynamic capillary electrophoresis model which uses material specific input data for estimation of electroosmosis was applied to investigate fundamental aspects of isoelectric focusing (IEF) in capillaries or microchannels made from bare fused-silica (FS), FS coated with a sulfonated polymer, polymethylmethacrylate (PMMA) and poly(dimethylsiloxane) (PDMS). Input data were generated via determination of the electroosmotic flow (EOF) using buffers with varying pH and ionic strength. Two models are distinguished, one that neglects changes of ionic strength and one that includes the dependence between electroosmotic mobility and ionic strength. For each configuration, the models provide insight into the magnitude and dynamics of electroosmosis. The contribution of each electrophoretic zone to the net EOF is thereby visualized and the amount of EOF required for the detection of the zone structures at a particular location along the capillary, including at its end for MS detection, is predicted. For bare FS, PDMS and PMMA, simulations reveal that EOF is decreasing with time and that the entire IEF process is characterized by the asymptotic formation of a stationary steady-state zone configuration in which electrophoretic transport and electroosmotic zone displacement are opposite and of equal magnitude. The location of immobilization of the boundary between anolyte and most acidic carrier ampholyte is dependent on EOF, i.e. capillary material and anolyte. Overall time intervals for reaching this state in microchannels produced by PDMS and PMMA are predicted to be similar and about twice as long compared to uncoated FS. Additional mobilization for the detection of the entire pH gradient at the capillary end is required. Using concomitant electrophoretic mobilization with an acid as coanion in the catholyte is shown to provide sufficient additional cathodic transport for that purpose. FS capillaries dynamically double coated with polybrene and poly(vinylsulfonate) are predicted to provide sufficient electroosmotic pumping for detection of the entire IEF gradient at the cathodic column end.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA diagnosis is experiencing an impressive progression towards the development of novel technology to identity various clinically relevant categories of genetic changes and to meet the exponential growth of genomics. The introduction of capillary electrophoresis has dramatically accelerated the completion of the first draft of the human DNA sequence in the Human Genome Project, and thus, has become the method of choice for analysis of various genetic variants. The recent development of microfabricated electrophoretic devices has led to the possibility of integrating multiple sample handling with the actual measurement steps required for automation of molecular diagnostics. This review highlights the most recent progress in capillary electrophoresis and electrophoretic microdevices for DNA-based diagnostics, including the important areas of genotyping for point mutation, single nucleotide polymorphisms, short tandem repeats and organism identification. The application of these techniques for infectious and genetic disease diagnosis, as well as forensic identification purpose, are covered. The promising development and the challenges for techinical problems are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new approach for fast and sensitive electrochemiluminescence (ECL) detection of narcotic drugs on a microchip after separation by micellar electrokinetic chromatography (MEKC) is presented, taking the cocaine and its hydrolysate ecgonine as the test analytes. The mixture of hydrophilic BMIMBF4 ionic liquid (IL) and sodium dodecyl sulfate (SDS) was used directly as the buffer of MEKC with less noisy baselines, lower electrophoretic current and satisfactory separation performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this report, we describe a rapid and reliable process to bond channels fabricated in glass substrates. Glass channels were fabricated by photolithography and wet chemical etching. The resulting channels were bonded against another glass plate containing a 50-mu m thick PDMS layer. This same PDMS layer was also used to provide the electrical insulation of planar electrodes to carry out capacitively coupled contactless conductivity detection. The analytical performance of the proposed device was shown by using both LIF and capacitively coupled contactless conductivity detection systems. Efficiency around 47 000 plates/m was achieved with good chip-to-chip repeatability and satisfactory long-term stability of EOF. The RSD for the EOF measured in three different devices was ca. 7%. For a chip-to-chip comparison, the RSD values for migration time, electrophoretic current and peak area were below 10%. With the proposed approach, a single chip can be fabricated in less than 30 min including patterning, etching and sealing steps. This fabrication process is faster and easier than the thermal bonding process. Besides, the proposed method does not require high temperatures and provides excellent day-to-day and device-to-device repeatability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogels, which are three-dimensional crosslinked hydrophilic polymers, have been used and studied widely as vehicles for drug delivery due to their good biocompatibility. Traditional methods to load therapeutic proteins into hydrogels have some disadvantages. Biological activity of drugs or proteins can be compromised during polymerization process or the process of loading protein can be really timeconsuming. Therefore, different loading methods have been investigated. Based on the theory of electrophoresis, an electrochemical gradient can be used to transport proteins into hydrogels. Therefore, an electrophoretic method was used to load protein in this study. Chemically and radiation crosslinked polyacrylamide was used to set up the model to load protein electrophoretically into hydrogels. Different methods to prepare the polymers have been studied and have shown the effect of the crosslinker (bisacrylamide) concentration on the protein loading and release behaviour. The mechanism of protein release from the hydrogels was anomalous diffusion (i.e. the process was non-Fickian). The UV-Vis spectra of proteins before and after reduction show that the bioactivities of proteins after release from hydrogel were maintained. Due to the concern of cytotoxicity of residual monomer in polyacrylamide, poly(2-hydroxyethyl- methacrylate) (pHEMA) was used as the second tested material. In order to control the pore size, a polyethylene glycol (PEG) porogen was introduced to the pHEMA. The hydrogel disintegrated after immersion in water indicating that the swelling forces exceeded the strength of the material. In order to understand the cause of the disintegration, several different conditions of crosslinker concentration and preparation method were studied. However, the disintegration of the hydrogel still occurred after immersion in water principally due to osmotic forces. A hydrogel suitable for drug delivery needs to be biocompatible and also robust. Therefore, an approach to improving the mechanical properties of the porogen-containing pHEMA hydrogel by introduction of an inter-penetrating network (IPN) into the hydrogel system has been researched. A double network was formed by the introduction of further HEMA solution into the system by both electrophoresis and slow diffusion. Raman spectroscopy was used to observe the diffusion of HEMA into the hydrogel prior to further crosslinking by ã-irradiation. The protein loading and release behaviour from the hydrogel showing enhanced mechanical property was also studied. Biocompatibility is a very important factor for the biomedical application of hydrogels. Different hydrogels have been studied on both a three-dimensional HSE model and a HSE wound model for their biocompatibilities. They did not show any detrimental effect to the keratinocyte cells. From the results reported above, these hydrogels show good biocompatibility in both models. Due to the advantage of the hydrogels such as the ability to absorb and deliver protein or drugs, they have potential to be used as topical materials for wound healing or other biomedical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We directly constructed reduced graphene oxide–titanium oxide nanotube (RGO–TNT) film using a single-step, combined electrophoretic deposition–anodization (CEPDA) method. This method, based on the simultaneous anodic growth of tubular TiO2 and the electrophoretic-driven motion of RGO, allowed the formation of an effective interface between the two components, thus improving the electron transfer kinetics. Composites of these graphitic carbons with different levels of oxygen-containing groups, electron conductivity and interface reaction time were investigated; a fine balance of these parameters was achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of Surface lipopolysaccharides (LPS) on the electrophoretic softness and fixed charge density in the ion-penetrable layer of Acidithiobacillus ferrooxidans cells grown in presence of copper or arsenic ions have been discussed, The electrophoretic mobility data were analyzed using the soft-particle electrophoresis theory. Cell surface potentials of all the strains based on soft-particle theory were lower than those estimated using the conventional Smoluchowski theory, Exposure to metal ions increased the Surface electrophoretic softness with decrease in the fixed charge density. Effect of cell surface lipopolysaccharides on the model parameters are investigated and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study examined whether a specific property of cell microstructures may be useful as a biomarker of aging. Specifically, the association between age and changes of cellular structures reflected in electrophoretic mobility of cell nuclei index (EMN index) values across the adult lifespan was examined. This report considers findings from cross sections of females (n = 1273) aged 18–98 years, and males (n = 506) aged 19–93 years. A Biotest apparatus was used to perform intracellular microelectrophoresis on buccal epithelial cells collected from each individual. EMN index was calculated on the basis of the number of epithelial cells with mobile nuclei in reference to the cells with immobile nuclei per 100 cells. Regression analyses indicated a significant negative association between EMN index value and age for men (r = −0.71, p < 0.001) and women (r = −0.60, p < 0.001); demonstrating a key requirement that must be met by a biomarker of aging. The strength of association observed between EMN index and age for both men and women was encouraging and supports the potential use of EMN index for determining a biological age of an individual (or a group). In this study, a new attempt of complex explanation of cellular mechanisms contributing to age related changes of the EMN index was made. In this study, a new attempt of complex explanation of cellular mechanisms contributing to age related changes of the EMN index was made. EMN index has demonstrated potential to meet criteria proposed for biomarkers of aging and further investigations are necessary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ti3Si(Al)C2 films were electrophoretically deposited at 3 V on indium-tin-oxide (ITO) conductive glass from Ti3Si(Al) C2 aqueous suspension with 1 vol% solid loading at pH 9 in the absence of any dispersant. The surface morphology, cross section microstructure, and preferred orientation of the films were investigated by scanning electron microscopy and X-ray diffraction. The as-deposited Ti3Si(Al)C 2 films exhibited (00l) preferred orientation and the thickness can be controlled by the deposition-drying-deposition method. These results demonstrate that electrophoretic deposition is a simple and feasible method to prepare MAX-phases green films at room temperature.