973 resultados para electrical transport (conductivity, resistivity, mobility, etc.)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent experiments on Au break junctions [Phys. Rev. Lett. 88 (2002) 216803] have characterized the nonlinear conductance of stretched short Au nanowires. They reveal in the voltage range 10-20 meV the signatures of dissipation effects, likely due to phonons in the nanowire, reducing the conductance below the quantized value of 2e(2)/h. We present here a theory, based on a model tight-binding Hamiltonian and on non-equilibrium Green's function techniques, which accounts for the main features of the experiment. The theory helps in revealing details of the experiment which need to be addressed with a more realistic, less idealized, theoretical framework. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evaluation of free carrier concentration based on Drude's theory can be performed by the use of optical transmittance in the range 800-2000 nm (near infrared) for Sb-doped SnO2 thin films. In this article, we estimate the free carrier concentration for these films, which are deposited via sol-gel dip-coating. At approximately 900 mn, there is a separation among transmittance curves of doped and undoped samples. The plasma resonance phenomena approach leads to free carrier concentration of about 5 x 1020 cm(-3). The increase in the Sb concentration increases the film conductivity; however, the magnitude of measured resistivity is still very high. The only way to combine such a high free carrier concentration with a rather low conductivity is to have a very low mobility. It becomes possible when the crystallite dimensions are taken into account. We obtain grains with 5 nm of average size by estimating the grain size from X-ray diffraction data, and by using line broadening in the diffraction pattern. The low conductivity is due to very intense scattering at the grain boundary, which is created by the presence of a large amount of nanoscopic crystallites. Such a result is in accordance with X-ray photoemission spectroscopy data that pointed to Sb incorporation proportional to the free electron concentration, evaluated according to Drude's model. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On the basis of the Boltzmann equation, the authors propose a model that includes scattering from both film surfaces and grain boundaries, and have studied the quasiclassical electrical transport in metallic films. The in-plane electric conductivity of metallic films is obtained, and the theoretical results are shown to be in good agreement with experimental data. We also give the relation between temperature coefficient of resistivity and thickness of metallic films and make a comparison with experiment. <(C)> 2004 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin films (100-500 nm) of the Si:O alloy have been systematically characterized in the optical absorption and electrical transport behavior, by varying the Si content from 43 up to 100 at. %. Magnetron sputtering or plasma enhanced chemical vapor deposition have been used for the Si:O alloy deposition, followed by annealing up to 1250 °C. Boron implantation (30 keV, 3-30× 1014 B/cm2) on selected samples was performed to vary the electrical sheet resistance measured by the four-point collinear probe method. Transmittance and reflectance spectra have been extracted and combined to estimate the absorption spectra and the optical band gap, by means of the Tauc analysis. Raman spectroscopy was also employed to follow the amorphous-crystalline (a-c) transition of the Si domains contained in the Si:O films. The optical absorption and the electrical transport of Si:O films can be continuously and independently modulated by acting on different parameters. The light absorption increases (by one decade) with the Si content in the 43-100 at. % range, determining an optical band gap which can be continuously modulated into the 2.6-1.6 eV range, respectively. The a-c phase transition in Si:O films, causing a significant reduction in the absorption coefficient, occurs at increasing temperatures (from 600 to 1100 °C) as the Si content decreases. The electrical resistivity of Si:O films can be varied among five decades, being essentially dominated by the number of Si grains and by the doping. Si:O alloys with Si content in the 60-90 at. % range (named oxygen rich silicon films), are proved to join an appealing optical gap with a viable conductivity, being a good candidate for increasing the conversion efficiency of thin-film photovoltaic cell. © 2010 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phase-interconversions between the spinel-, brownmillerite-, defect rocksalt and perovskite-type structures have been investigated by way of (i) introducing deficiency in A-sites in CaxMn2-xO3 (0.05 <= x <= 1) i.e., by varying Ca/Mn ratio from 0.025 to 1 and (ii) nonstoichiometric CaMnO3-delta (CMO) with 0.02 <= delta <= 1. The temperature dependence of resistivity (rho-T) have been investigated on nonstoichiometric CaMnO3-delta (undoped) as well as the CMO substituted with donor impurities such as La3+, Y3+, Bi3+ or acceptor such as Na1+ ion at the Ca-site. The rho-T characteristics of nonstoichiometric CaMnO3-delta is strongly influenced by oxygen deficiency, which controls the concentration of Mn3+ ions and, in turn, affects the resistivity, rho. The results indicated that the substitution of aliovalent impurities at Ca-site in CaMnO3 has similar effects as of CaMnO3-delta ( undoped) annealed in atmospheres of varying partial pressures whereby electron or hole concentration can be altered, yet the doped samples can be processed in air or atmospheres of higher P-O2. The charge transport mechanisms of nonstoichiometric CaMnO3-delta as against the donor or acceptor doped CaMnO3 (sintered in air, P-O2 similar to 0.2 atm) have been predicted. The rho (T) curves of both donor doped CaMnO3 as well as non-stoichiometric CaMnO3-delta, is predictable by the small polaron hopping (SPH) model, which changes to the variable range hopping (VRH) at low temperatures whereas the acceptor doped CaMnO3 exhibited an activated semiconducting hopping ( ASH) throughout the measured range of temperature (10-500 K).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of pressure on the electrical resistivity of bulk Si20Te80 glass is reported. Results of calorimetric, X-ray and transmission electron microscopy investigations at different stages of crystallization of bulk Si20Te80 glass are also presented. A pressure induced glass-to-crystal transition occurs at a pressure of 7 GPa. Pressure and temperature dependence of the electrical resistivity of Si20Te80 glass show the observed transition is a pressure induced glassy semiconductor to crystalline metal transition. The glass also exhibits a double Tg effect and double stage crystallization, under heating. The differences between the temperature induced crystallization (primary crystallization) and pressure induced congruent crystallization are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The DC and AC conductivity studies of As---Se glasses over a wide range of compositions have been reported and discussed. The contribution to conductivity from transport among extended states has been delineated and the possible existence of a characteristic temperature is indicated. Two conductivity maxima have been observed as a function of composition in AC conductivities at lower temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a comparative study of the low temperature electrical transport properties of the carbon matrix containing iron nanoparticles and the films. The conductivity of the nanoparticles located just below the metal-insulator transition exhibits metallic behavior with a logarithmic temperature dependence over a large temperature interval. The zero-field conductivity and the negative magnetoresistance, showing a characteristic upturn at liquid helium temperature, are consistently explained by incorporating the Kondo relation and the two dimensional electron-electron interaction. The films, in contrast, exhibit a crossover of the conductivity from power-law dependence at high temperatures to an activated hopping law dependence in the low temperature region. The transition is attributed to changes in the energy dependence of the density of states near the Fermi level. The observed magnetoresistance is discussed in terms of quantum interference effect on a three-dimensional variable range hopping mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied the resistivity and thermopower of the solid solution LaNi1-xCoxO3 in the temperature range 1.4K-300K. Effect of interaction and localization are seen in the low temperature transport data for x<0.55. A negative anomaly in the thermopower has been observed at low temperature for 0.1

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study of the transport properties of layered crystalline semiconductors GeS (undoped and doped with Ag, P impurity) under quasihydrostatic pressure using Bridgman anvil system is made for the first time. Pressure-induced effects in undoped crystals reveal initial rise in resistivity followed by two broad peaks at higher pressures. Silver doping induces only minor changes in the behaviour except removing the second peak. Phosphorous impurity is found to have drastic effect on the transport properties. Temperature dependence of the resistivity exhibits two activation energies having opposite pressure coefficients. Results are discussed in the light of intrinsic features of the layered semiconductors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrical transport in Bi doped amorphous semiconductors (GeSe3.5)100-xBix (x=0,4,10) is studied in a Bridgman anvil system up to a pressure of 90 kbar and down to 77 K. A pressure induced continuous transition from an amorphous semiconductor to a metal-like solid is observed in GeSe3.5. The addition of Bi disturbs significantly the behaviour of resistivity with pressure. The results are discussed in the light of molecular cluster model for GeySe1-y proposed by Phillips.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The conductivity of MgAl2O4 has been measured at 1273, 1473 and 1673 K as a function of the partial pressure of oxygen ranging from 105 to 10−14 Pa. The MgAl2O4 pellet, sandwiched between two platinum electrodes, was equilibrated with a flowing stream of either Ar + O2, CO + CO2 or Ar + H2 + H2O mixture of known composition. The gas mixture established a known oxygen partial pressure. All measurements were made at a frequency of 1 kHz. These measurements indicate pressure independent ionic conductivity in the range 1 to 10−14 Pa at 1273 K, 10−1 to 10−12 Pa at 1473 K and 10−1 to 10−4 Pa at 1673 K. The activation energy for ionic conduction is 1·48 eV, close to that for self-diffusion of Mg2+ ion in MgAl2O4 calculated from the theoretical relation of Glyde. Using the model, the energy for cation vacancy formation and activation energy for migration are estimated.