971 resultados para ductular proliferation


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background/Purpose: The mechanisms of increased collagen production and liver parenchyma fibrosis are poorly understood. These phenomena are observed mainly in children with biliary obstruction (BO), and in a great number of patients, the evolution to biliary cirrhosis and hepatic failure leads to the need for liver transplantation before adolescence. However, pediatric liver transplantation presents with biliary complications in 20% to 30% of cases in the postoperative period. Intra-or extrahepatic stenosis of bile ducts is frequent and may lead to secondary biliary cirrhosis and the need for retransplantation. It is unknown whether biliary stenosis involving isolated segments or lobes may affect the adjacent nonobstructed lobes by paracrine or endocrine means, leading to fibrosis in this parenchyma. Therefore, the present study aimed to create an experimental model of selective biliary duct ligation in young animals with a subsequent evaluation of the histologic and molecular alterations in liver parenchyma of the obstructed and nonobstructed lobes. Methods: After a pilot study to standardize the surgical procedures, weaning rats underwent ligation of the bile ducts of the median, left lateral, and caudate liver lobes. The bile duct of the right lateral lobe was kept intact. To avoid intrahepatic biliary duct collaterals neoformation, the parenchymal connection between the right lateral and median lobes was clamped. The animals were divided into groups according to the time of death: 1, 2, 3, 4, and 8 weeks after surgical procedure. After death, the median and left lateral lobes (with BO) and the right lateral lobe (without BO [NBO]) were harvested separately. A group of 8 healthy nonoperated on animals served as controls. Liver tissues were subjected to histologic evaluation and quantification of the ductular proliferation and of the portal fibrosis. The expressions of smooth muscle alpha-actin (alpha-SMA), desmin, and transforming growth factor beta 1 genes were studied by molecular analyses (semiquantitative reverse transcriptase-polymerase chain reaction and real-time polymerase chain reaction, a quantitative method). Results: Histologic analyses revealed the occurrence of ductular proliferation and collagen formation in the portal spaces of both BO and NBO lobes. These phenomena were observed later in NBO than BO. Bile duct density significantly increased 1 week after duct ligation; it decreased after 2 and 3 weeks and then increased again after 4 and 8 weeks in both BO and NBO lobes. The portal space collagen area increased after 2 weeks in both BO and NBO lobes. After 3 weeks, collagen deposition in BO was even higher, and in NBO, the collagen area started decreasing after 2 weeks. Molecular analyses revealed increased expression of the alpha-SMA gene in both BO and NBO lobes. The semiquantitative and quantitative methods showed concordant results. Conclusions: The ligation of a duct responsible for biliary drainage of the liver lobe promoted alterations in the parenchyma and in the adjacent nonobstructed parenchyma by paracrine and/or endocrine means. This was supported by histologic findings and increased expression of alpha-SMA, a protein related to hepatic fibrogenesis. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND ; AIMS: Integrin alphavbeta6 is highly expressed on certain activated epithelia, where it mediates attachment to fibronectin and serves as coreceptor for the activation of latent transforming growth factor (TGF)-beta1. Because its role in liver fibrosis is unknown, we studied alphavbeta6 function in vitro and explored the antifibrotic potential of the specific alphavbeta6 antagonist EMD527040. METHODS: Experimental liver fibrosis was studied in rats after bile duct ligation (BDL) and in Mdr2(abcb4)(-/-) mice. Different doses of EMD527040 were given to rats from week 2 to 6 after BDL and to Mdr2(-/-) mice from week 4 to 8. Liver collagen was quantified, and expression of alphavbeta6 and fibrosis-related transcripts was determined by quantitative reverse-transcription polymerase chain reaction. alphavbeta6-expressing cells, bile duct proliferation, and apoptosis were assessed histologically. The effect of EMD527040 on cholangiocyte adhesion, proliferation, apoptosis, and TGF-beta1 activation was studied in vitro. RESULTS: alphavbeta6 was highly expressed on proliferating bile duct epithelia in fibrosis, with 100-fold increased transcript levels in advanced fibrosis. EMD527040 attenuated bile ductular proliferation and peribiliary collagen deposition by 40%-50%, induced down-regulation of fibrogenic and up-regulation of fibrolytic genes, and improved liver architecture and function. In vitro alphavbeta6 inhibition reduced activated cholangiocyte proliferation, their adhesion to fibronectin, and endogenous activation of TGF-beta1 by 50% but did not affect bile duct apoptosis. CONCLUSIONS: Integrin alphavbeta6 is strongly up-regulated in proliferating bile duct epithelia and drives fibrogenesis via adhesion to fibronectin and auto/paracrine TGF-beta1 activation. Pharmacologic inhibition of alphavbeta6 potently inhibits the progression of primary and secondary biliary fibrosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanisms for progressive fibrosis and exacerbation by steatosis in patients with chronic hepatitis C (HCV) are still unknown. We hypothesized that proliferative blockade in HCV-infected and steatotic hepatocytes results in the default activation of hepatic progenitor cells (HPC), capable of differentiating into both biliary and hepatocyte lineages, and that the resultant ductular reaction promotes portal fibrosis. To study this concept, 115 liver biopsy specimens from subjects with HCV were scored for steatosis, inflammation, and fibrosis. Biliary epithelium and HPC were decorated by cytokeratin 7 immunoperoxidase, and the replicative state of hepatocytes was assessed by p21 and Ki-67 immunohistochemistry. A ductular reaction at the portal interface was common. There was a highly significant correlation between the area of ductular reaction and fibrosis stage (r = 0.453, P < .0001), which remained independently associated after multivariate analysis. HPC numbers also correlated with fibrosis (r = 0.544, P < .0001) and the ductular area (r = 0.624, P < .0001). Moreover, steatosis correlated with greater HPC proliferation (r = 0.372, P = .0004) and ductular reaction (r = 0.374, P < .0001) but was not an obligate feature. Impaired hepatocyte replication by p21 expression was independently associated with HPC expansion (P = .002) and increased with the body mass index (P < .001) and lobular inflammation (P = .005). In conclusion, the strong correlation between portal fibrosis and a periportal ductular reaction with HPC expansion, the exacerbation by steatosis, and the associations with impaired hepatocyte replication suggest that an altered regeneration pathway drives the ductular reaction. We believe this triggers fibrosis at the portal tract interface. This may be a stereotyped response of importance in other chronic liver diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell proliferation is a critical and frequently studied feature of molecular biology in cancer research. Therefore, various assays are available using different strategies to measure cell proliferation. Metabolic assays such as AlamarBlue, WST-1, and MTT, which were originally developed to determine cell toxicity, are being used to assess cell numbers. Additionally, proliferative activity can be determined by quantification of DNA content using fluorophores, such as CyQuant and PicoGreen. Referring to data published in high ranking cancer journals, 945 publications applied these assays over the past 14 years to examine the proliferative behaviour of diverse cell types. Within this study, mainly metabolic assays were used to quantify changes in cell growth yet these assays may not accurately reflect cellular proliferation rates due to a miscorrelation of metabolic activity and cell number. Testing this hypothesis, we compared metabolic activity of different cell types, human cancer cells and primary cells, over a time period of 4 days using AlamarBlue and fluorometric assays CyQuant and PicoGreen to determine their DNA content. Our results show certain discrepancies in terms of over-estimation of cell proliferation with respect to the metabolic assay in comparison to DNA binding fluorophores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth and differentiation of mesenchymal stem cells is controlled by various growth factors, the activities of which can be modulated by heparan sulfates. We have previously underscored the necessity of sulfated glycosaminoglycans for the FGF-2-stimulated differentiation of osteoprogenitor cells. Here we show that exogenous application of heparan sulfate to cultures of primary rat MSCs stimulates their proliferation leading to increased expression of osteogenic markers and enhanced bone nodule formation. FGF-2 can also increase the proliferation and osteogenic differentiation of rMSCs when applied exogenously during their linear growth. However, as opposed to exogenous HS, the continuous use of FGF-2 during in vitro differentiation completely blocked rMSC mineralization. Furthermore, we show that the effects of both FGF-2 and HS are mediated through FGF receptor 1 (FGFR1) and that inhibition of signaling through this receptor arrests cell growth resulting in the cells being unable to reach the critical density necessary to induce differentiation. Interestingly, blocking FGFR1 signaling in post-confluent osteogenic cultures significantly increased calcium deposition. Taken together our data clearly suggests that FGFR1 signaling plays an important role during osteogenic differentiation, firstly by stimulating cell growth that is closely followed by an inhibitory affect once the cells have reached confluence. It also underlines the importance of HS as a co-receptor for the signaling of endogenous FGF-2 and suggests that purified glycosaminoglycans may be attractive alternatives to growth factors for improved ex vivo growth and differentiation of MSCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation of hypertrophic scars is a frequent medical outcome of wound repair and often requires further therapy with treatments such as Silicone Gel Sheets (SGS) or apoptosis-inducing agents, including bleomycin. Although widely used, knowledge regarding SGS and their mode of action is limited. Preliminary research has shown that small amounts of amphiphilic silicone present in SGS have the ability to move into skin during treatment. We demonstrate herein that a commercially available analogue of these amphiphilic siloxane species, the rake copolymer GP226, decreases collagen synthesis upon exposure to cultures of fibroblasts derived from hypertrophic scars (HSF). By size exclusion chromatography, GP226 was found to be a mixture of siloxane species, containing five fractions of different molecular weight. By studies of collagen production, cell viability and proliferation, it was revealed that a low molecular weight fraction (fraction IV) was the most active, reducing the number of viable cells present following treatment and thereby reducing collagen production as a result. Upon exposure of fraction IV to human keratinocytes, viability and proliferation was also significantly affected. HSF undergoing apoptosis after application of fraction IV were also detected via real-time microscopy and by using the TUNEL assay. Taken together, these data suggests that these amphiphilic siloxanes could be potential non-invasive substitutes to apoptotic-inducing chemical agents that are currently used as scar treatments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High renewal and maintenance of multipotency of human adult stem cells (hSCs), are a prerequisite for experimental analysis as well as for potential clinical usages. The most widely used strategy for hSC culture and proliferation is using serum. However, serum is poorly defined and has a considerable degree of inter-batch variation, which makes it difficult for large-scale mesenchymal stem cells (MSCs) expansion in homogeneous culture conditions. Moreover, it is often observed that cells grown in serum-containing media spontaneously differentiate into unknown and/or undesired phenotypes. Another way of maintaining hSC development is using cytokines and/or tissue-specific growth factors; this is a very expensive approach and can lead to early unwanted differentiation. In order to circumvent these issues, we investigated the role of sphingosine-1-phosphate (S1P), in the growth and multipotency maintenance of human bone marrow and adipose tissue-derived MSCs. We show that S1P induces growth, and in combination with reduced serum, or with the growth factors FGF and platelet-derived growth factor-AB, S1P has an enhancing effect on growth. We also show that the MSCs cultured in S1P-supplemented media are able to maintain their differentiation potential for at least as long as that for cells grown in the usual serum-containing media. This is shown by the ability of cells grown in S1P-containing media to be able to undergo osteogenic as well as adipogenic differentiation. This is of interest, since S1P is a relatively inexpensive natural product, which can be obtained in homogeneous high-purity batches: this will minimize costs and potentially reduce the unwanted side effects observed with serum. Taken together, S1P is able to induce proliferation while maintaining the multipotency of different human stem cells, suggesting a potential for S1P in developing serum-free or serum-reduced defined medium for adult stem cell cultures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obesity represents a major health, social and economic burden to many developing and Westernized communities, with the prevalence increasing at a rate exceeding almost all other medical conditions. Despite major recent advances in our understanding of adipose tissue metabolism and dynamics, we still have limited insight into the regulation of adipose tissue mass in humans. Any significant increase in adipose tissue mass requires proliferation and differentiation of precursor cells (preadipocytes) present in the stromo-vascular compartment of adipose tissue. These processes are very complex and an increasing number of growth factors and hormones have been shown to modulate the expression of genes involved in preadipocyte proliferation and differentiation. A number of transcription factors, including the C/EBP family and PP ARy, have been identified as integral to adipose tissue development and preadipocyte differentiation. Together PP ARy and C/EBPa regulate important events in the activation and maintenance of the terminally differentiated phenotype. The ability of PP ARy to increase transcription through its DNA recognition site is dependent on the binding of ligands. This suggests that an endogenous PP ARy ligand may be an important regulator of adipogenesis. Adipose tissue functions as both the major site of energy storage in the body and as an endocrine organ synthesizing and secreting a number of important molecules involved in regulation of energy balance. For optimum functioning therefore, adipose tissue requires extensive vascularization and previous studies have shown that growth of adipose tissue is preceded by development of a microvascular network. This suggests that paracrine interactions between constituent cells in adipose tissue may be involved in both new capillary formation and fat cell growth. To address this hypothesis the work in this project was aimed at (a) further development of a method for inducing preadipocyte differentiation in subcultured human cells; (b) establishing a method for simultaneous isolation and separate culture of both preadipocytes and microvascular endothelial cells from the same adipose tissue biopsies; (c) to determine, using conditioned medium and co-culture techniques, if endothelial cell-derived factors influence the proliferation and/or differentiation of human preadipocytes; and (d) commence characterization of factors that may be responsible for any observed paracrine effects on aspects of human adipogenesis. Major findings of these studies were as follows: (A) Inclusion of either linoleic acid (a long-chain fatty acid reported to be a naturally occurring ligand for PP ARy) or Rosiglitazone (a member of the thiazolidinedione class of insulin-sensitizing drugs and a synthetic PPARy ligand) in differentiation medium had markedly different effects on preadipocyte differentiation. These studies showed that human preadipocytes have the potential to accumulate triacylglycerol irrespective of their stage of biochemical differentiation, and that thiazolidinediones and fatty acids may exert their adipogenic and lipogenic effects via different biochemical pathways. It was concluded that Rosiglitazone is a more potent inducer of human preadipocyte differentiation than linoleic acid. (B) A method for isolation and culture of both endothelial cells and preadipocytes from the same adipose tissue biopsy was developed. Adipose-derived microvascular endothelial cells were found to produce factor/s, which enhance both proliferation and differentiation of human preadipocytes. (C) The adipogenic effects of microvascular endothelial cells can be mimicked by exposure of preadipocytes to members of the Fibroblast Growth Factor family, specifically ~-ECGF and FGF-1. (D) Co-culture of human preadipocytes with endothelial cells or exposure of preadipocytes to either ~-ECGF or FGF-1 were found to 'prime' human preadipocytes, during their proliferative phase of growth, for thiazolidinedione-induced differentiation. (E) FGF -1 was not found to be acting as a ligand for PP ARy in this system. Findings from this project represent a significant step forward in our understanding of factors involved in growth of human adipose tissue and may lead to the development of therapeutic strategies aimed at modifying the process. Such strategies would have potential clinical utility in the treatment of obesity and obesity related disorders such as Type II Diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell invasion involves a population of cells which are motile and proliferative. Traditional discrete models of proliferation involve agents depositing daughter agents on nearest- neighbor lattice sites. Motivated by time-lapse images of cell invasion, we propose and analyze two new discrete proliferation models in the context of an exclusion process with an undirected motility mechanism. These discrete models are related to a family of reaction- diffusion equations and can be used to make predictions over a range of scales appropriate for interpreting experimental data. The new proliferation mechanisms are biologically relevant and mathematically convenient as the continuum-discrete relationship is more robust for the new proliferation mechanisms relative to traditional approaches.