965 resultados para dominant inheritance
Resumo:
Oculoauriculovertebral spectrum (OAVS; OMIM 164210) is a complex condition characterized by defects of aural, oral, mandibular and vertebral development. The aetiology of this condition is likely to be heterogeneous; most cases are sporadic, however, familial cases suggesting autosomal recessive end autosomal dominant inheritance have been reported. In this study, we describe the clinical aspects of nine familial cases with evidence of autosomal dominant inheritance and compare them with reports in the literature. Interfamilial and intrafamilial clinical variabilities were observed in this study (reinforcing the necessity of careful examination of familial members). We suggest that oculoauriculovertebral spectrum with autosomal dominant inheritance is characterized mainly by bilateral auricular involvement and rarely presents extracranial anomalies. Clin Dysmorphol 18:67-77 (C) 2009 Wolters Kluwer Health | Lippincott Williams & Wilkins.
Resumo:
We found evidence of autosomal dominant hereditary transmission of sulcus vocalis. Four dysphonic patients from three generations of the same family were submitted to videolaryngoscopic examination (three patients) and to direct laryngoscopy ( one patient) to diagnose the hoarseness. Sulcus vocalis was diagnosed in all four patients. The finding of four affected individuals in three generations, with vertical transmission affecting man and women, is more consistent with autosomal dominant inheritance pattern; it is an etiological model that we propose for the sulcus vocalis in this pedigree.
Resumo:
Spondylocarpotarsal synostosis syndrome (SCT) (OMIM 272460), originally thought to be a failure of normal spine segmentation, is characterized by progressive fusion of vertebras and associates unsegmented bars, scoliosis, short stature, carpal and tarsal synostosis. Cleft palate, sensorineural or mixed hearing loss, joint limitation, clinodactyly, and dental enamel hypoplasia are variable manifestations. Twenty-five patients have been reported. Thirteen affected individuals were siblings from six families and four of these families were consanguineous. In four of those families, Krakow et al. [Krakow et al. (2004) Nat Genet 36:405-410] found homozygosity or compound heterozygosity for mutations in the gene encoding FLNB. This confirmed autosomal recessive inheritance of the disorder. We report on two new patients (a mother and her son) representing the first case of autosomal dominant inheritance. These patients met the clinical and radiological criteria for SCT and did not present any features which could exclude this diagnosis. Molecular analysis failed to identify mutations in NOG and FLNB. SCT is therefore, genetically heterogeneous. Both dominant and autosomal recessive forms of inheritance should be considered during genetic counseling.
Resumo:
Mandibular prognathism typically shows familial aggregation. Various genetic models have been described and it is assumed to be a multifactorial and polygenic trait, with a threshold for expression. Our goal was to examine specific genetic models of the familial transmission of this trait. The study sample comprised of 2,562 individuals from 55 families. Complete family histories for each proband were ascertained and the affection status of relatives were confirmed by lateral cephalograms, photographs, and dental models. Pedigrees were drawn using PELICAN and complex segregation analysis was performed using POINTER. Parts of some pedigrees were excluded to create one founder pedigrees, so the total N was 2,050. Analysis showed more affected females than males (P = 0.030). The majority of the pedigrees suggest autosomal dominant inheritance. Incomplete penetrance was demonstrated by the ratio of affected/unaffected parents and siblings. The heritability of mandibular prognathism was estimated to be 0.316. We conclude that there is a major gene that influences the expression of mandibular prognathism with clear signs of Mendelian inheritance and a multifactorial component. (C) 2007 Wiley-Liss, Inc.
Resumo:
Context and Objective: Most cases of goitrous congenital hypothyroidism (CH) from thyroid dyshormonogenesis 1) follow a recessive mode of inheritance and 2) are due to mutations in the thyroid peroxidase gene (TPO). We report the genetic mechanism underlying the apparently dominant inheritance of goitrous CH in a nonconsanguineous family of French Canadian origin. Design, Setting, and Participants: Two brothers identified by newborn TSH screening had severe hypothyroidism and a goiter with increased (99m)Tc uptake. The mother was euthyroid, but the father and two paternal uncles had also been diagnosed with goitrous CH. After having excluded PAX8 gene mutations, we hypothesized that the underlying defect could be TPO mutations. Results: Both compound heterozygous siblings had inherited a mutant TPO allele carried by their mother (c.1496delC; p.Pro499Argfs2X), and from their father, one brother had inherited a missense mutation (c.1978C-->G; p.Gln660Glu) and the other an insertion (c.1955insT; p.Phe653Valfs15X). The thyroid gland of one uncle who is a compound heterozygote for TPO mutations (p.Phe653Valfs15X/p.Gln660Glu) was removed because of concurrent multiple endocrine neoplasia type 2A. Immunohistochemistry revealed normal TPO staining, implying that Gln660Glu TPO is expressed properly. Modeling of this mutant in silico suggests that its three-dimensional structure is conserved, whereas the electrostatic binding energy between the Gln660Glu TPO and its heme group becomes repulsive. Conclusion: We report a pedigree presenting with pseudodominant goitrous CH due to segregation of three different TPO mutations. Although goitrous CH generally follows a recessive mode of inheritance, the high frequency of TPO mutations carriers may lead to pseudodominant inheritance.
Resumo:
OBJECTIVE To study clinical, morphological and molecular characteristics in a Swiss family with autosomal dominant familial neurohypophyseal diabetes insipidus (adFNDI). PARTICIPANTS AND METHODS A 15-month-old girl presenting with symptoms of polydipsia and polyuria was investigated by water deprivation test. Evaluation of the family revealed three further family members with symptomatic vasopressin-deficient diabetes insipidus. T1-weighted magnetic resonance images of the posterior pituitary were taken in two affected adult family members and molecular genetic analysis was performed in all affected individuals. RESULTS The water deprivation test in the 15-month-old child confirmed the diagnosis of vasopressin-deficient diabetes insipidus and the pedigree was consistent with autosomal dominant inheritance. The characteristic bright spot of the normal vasopressin-containing neurophypophysis was absent in both adults with adFNDI. Direct sequence analysis revealed a new deletion (177-179DeltaCGC) in exon 2 of the AVP-NP II gene in all affected individuals. At the amino acid level, this deletion eliminates cysteine 59 (C59Delta) and substitutes alanine 60 by tryptophan (A60W) in the AVP-NP II precursor; interestingly, the remainder of the reading frame remains unchanged. According to the three-dimensional structure of neurophysin, C59 is involved in a disulphide bond with C65. CONCLUSIONS Deletion of C59 and substitution of A60W in the AVP-NP II precursor is predicted to disrupt one of the seven disulphide bridges required for correct folding of the neurophysin moiety and thus disturb the function of neurophysin as the vasopressin transport protein. These data are in line with the clinical and morphological findings in the reported family with adFNDI.
Resumo:
Spinocerebellar ataxia type 1 (SCA1), spinocerebellar ataxia type 2 (SCA2) and Machado-Joseph disease or spinocerebellar ataxia type 3 (MJD/SCA3) are three distinctive forms of autosomal dominant spinocerebellar ataxia (SCA) caused by expansions of an unstable CAG repeat localized in the coding region of the causative genes. Another related disease, dentatorubropallidoluysian atrophy (DRPLA) is also caused by an unstable triplet repeat and can present as SCA in late onset patients. We investigated the frequency of the SCA1, SCA2, MJD/SCA3 and DRPLA mutations in 328 Brazilian patients with SCA, belonging to 90 unrelated families with various patterns of inheritance and originating in different geographic regions of Brazil. We found mutations in 35 families (39%), 32 of them with a clear autosomal dominant inheritance. The frequency of the SCA1 mutation was 3% of all patients; and 6 % in the dominantly inherited SCAs. We identified the SCA2 mutation in 6% of all families and in 9% of the families with autosomal dominant inheritance. The MJD/SCA3 mutation was detected in 30 % of all patients; and in the 44% of the dominantly inherited cases. We found no DRPLA mutation. In addition, we observed variability in the frequency of the different mutations according to geographic origin of the patients, which is probably related to the distinct colonization of different parts of Brazil. These results suggest that SCA may be occasionally caused by the SCA1 and SCA2 mutations in the Brazilian population, and that the MJD/SCA3 mutation is the most common cause of dominantly inherited SCA in Brazil.
Resumo:
Huntington disease (HD) is a progressive neurodegenerative disorder with autosomal dominant inheritance, characterized by choreiform movements and cognitive impairment. Onset of symptoms is around 40 years of age and progression to death occurs in approximately 10 to 15 years from the time of disease onset. HD is associated with an unstable CAG repeat expansion at the 5' and of the IT15 gene. We have genotyped the CAG repeat in the IT15 gene in 44 Brazilian individuals (42 patients and 2 unaffected family members) belonging to 34 unrelated families thought to segregate HD. We found one expanded CAG allele in 32 individuals (76%) belonging to 25 unrelated families. In these HD patients, expanded alleles varied from 43 to 73 CAG units and normal alleles varied from 18 to 26 CAGs. A significant negative correlation between age at onset of symptoms and size of the expanded CAG allele was found (r=0.6; p=0.0001); however, the size of the expanded CAG repeat could explain only about 40% of the variability in age at onset (r2=0.4). In addition, we genotyped 25 unrelated control individuals (total of 50 alleles) and found normal CAG repeats varying from 16 to 33 units. The percentage of heterozigocity of the normal allele in the control population was 88%. In conclusion, our results showed that not all patients with the HD phenotype carried the expansion at the IT15 gene. Furthermore, molecular diagnosis was possible in all individuals, since no alleles of intermediate size were found. Therefore, molecular confirmation of the clinical diagnosis in HD should be sought in all suspected patients, making it possible for adequate genetic counseling.
Resumo:
OBJECTIVE: To investigate the clinical and genetic characteristics of familial partial epilepsies. METHOD: Family history of seizures was questioned in all patients followed in our epilepsy clinics, from October 1997 to December 1998. Those with positive family history were further investigated and detailed pedigrees were obtained. All possibly affected individuals available underwent clinical evaluation. Seizures and epilepsy syndromes were classified according to the ILAE recommendations. Whenever possible, EEG and MRI were performed. RESULTS: Positive family history was identified in 32 unrelated patients. A total of 213 possibly affected individuals were identified, 161 of whom have been evaluated. The number of affected subjects per family ranged from two to 23. Temporal lobe epilepsy (TLE) was identified in 22 families (68%), frontal lobe epilepsy in one family (3%), partial epilepsy with centrotemporal spikes in five families (15%), and other benign partial epilepsies of childhood in four families (12%). Most of the affected individuals in the TLE families (69%) had clinical and/or EEG characteristics of typical TLE. However, the severity of epilepsy was variable, with 76% of patients with spontaneous seizure remission or good control with medication and 24% with refractory seizures, including 7 patients that underwent surgical treatment. In the other 10 families, we identified 39 possibly affected subjects, 23 of whom were evaluated. All had good seizure control (with or without medication) except for one patient with frontal lobe epilepsy. Pedigree analysis suggested autosomal dominant inheritance with incomplete penetrance in all families. CONCLUSION: Family history of seizures is frequent among patients with partial epilepsies. The majority of our families had TLE and its expression was not different from that observed in sporadic cases. The identification of genes involved in partial epilepsies may be usefull in classification of syndromes, to stablish prognosis and optimal treatment.
Resumo:
PURPOSE: Apert syndrome is a rare type I acrocephalosyndactyly syndrome characterized by craniosynostosis, severe syndactyly of the hands and feet, and dysmorphic facial features. Presents autosomal dominant inheritance assigned to mutations in the fibroblast growth factor receptors gene. The oral cavity of Apert patients includes a reduction in the size of the maxilla, tooth crowding, anterior open-bite of the maxilla, impacted teeth, delayed eruption, ectopic eruption, supernumerary teeth, and thick gingiva. The mandible usually is within normal size and shape, and simulates a pseudoprognathism. CASE DESCRIPTION: A female patient, 13 years old, with diagnosis of Apert syndrome, attended a dental radiology clinic. The clinical signs were occular anomalies, dysmorphic facial features, syndactyly and oral features observed clinically and radiographically. The patient was referred to a specialized center of clinical care for patients with special needs. CONCLUSION: Because of the multiple alterations in patients with Apert syndrome, a multidisciplinary approach, including dentists and neurosurgeons, plastic surgeons, ophthalmologists and geneticists, is essential for a successful planning and treatment.
Resumo:
Febrile seizures affect approximately 3% of all children under six years of age and are by far the most common seizure disorder(1). A small proportion of children with febrile seizures later develop ongoing epilepsy with afebrile seizures(2). Segregation analysis suggests the majority of cases have complex inheritance(3) but rare families show apparent autosomal dominant: inheritance. Two putative loci have been mapped (FEB1 and FEB2), but specific genes have not yet been identified(4,5). We recently described a clinical subset, termed generalized epilepsy with febrile seizures plus (GEFS(+)), in which many family members have seizures with fever that may persist beyond six years of age or be associated with afebrile generalized seizures(6). We now report linkage, in another large GEFS(+) family, to chromosome region 19q13.1 and identification of a mutation in the voltage-gated sodium (Na+)-channel beta 1 subunit gene (SCN1B). The mutation changes a conserved cysteine residue disrupting a putative disulfide bridge which normally maintains an extracellular immunoglobulin-like fold. Go-expression of the mutant pr subunit with a brain Na+-channel alpha subunit in Xenopus laevis oocytes demonstrates that the mutation interferes with the ability of the subunit to modulate channel-gating kinetics consistent with a loss-of-function allele. This observation develops the theme that idiopathic epilepsies are a family of channelopathies and raises the possibility of involvement of other Na+-channel subunit genes in febrile seizures and generalized epilepsies with complex inheritance patterns.
Resumo:
Familial hyperaldosteronism type II (FH-II) is characterized by autosomal dominant inheritance and hypersecretion of aldosterone due to adrenocortical hyperplasia or an aldosterone-producing adenoma; unlike FH type I (FH-I), hyperaldosteronism in FH-II is not suppressible by dexamethasone. Of a total of 17 FH-II families with 44 affected members, we studied a large kindred with 7 affected members that was informative for linkage analysis. Family members were screened with the aldosterone/PRA ratio test; patients with aldosterone/PRA ratio greater than 25 underwent fludrocortisone/salt suppression testing for confirmation of autonomous aldosterone secretion. Postural testing, adrenal gland imaging, and adrenal venous sampling were also performed. Individuals affected by FH-II demonstrated lack of suppression of plasma A levels after 4 days of dexamethasone treatment (0.5 mg every 6 h). All patients had neg ative genetic testing for the defect associated with FH-I, the CYP11B1/CYP11B2 hybrid gene. Genetic linkage was then examined between FH-II and aldosterone synthase (the CYP11B2 gene) on chromosome 8q. A polyadenylase repeat within the 5'-region of the CYP11B2 gene and 9 other markers covering an approximately 80-centimorgan area on chromosome 8q21-8qtel were genotyped and analyzed for linkage. Two-point logarithm of odds scores were negative and ranged from -12.6 for the CYP11B2 polymorphic marker to -0.98 for the D8S527 marker at a recombination distance (theta) of 0. Multipoint logarithm of odds score analysis confirmed the exclusion of the chromosome 8q21-8qtel area as a region harboring the candidate gene for FH-II in this family. We conclude that FH-II shares autosomal dominant inheritance and hyperaldosteronism with FH-I, but, as demonstrated by the large kindred investigated in this report, it is clinically and genetically distinct. Linkage analysis demonstrated that the CYP11B2 gene is not responsible for FH-II in this family; furthermore, chromosome 8q21-8qtel most likely does not harbor the genetic defect in this kindred.
Resumo:
Mutations in the Grb10-interacting GYF protein 2 (GIGYF2) gene, within the PARK11 locus, have been nominated as a cause of Parkinson`s disease in Italian and French populations. By sequencing the whole GIGYF2 coding region in forty-six probands (thirty-seven Italians) with familial Parkinson`s disease compatible with an autosomal dominant inheritance, we identified no mutations. Our data add to a growing body of evidence suggesting that GIGYF2 mutations are not a frequent cause of PD. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The identification of genes responsible for the rare cases of familial leukemia may afford insight into the mechanism underlying the more common sporadic occurrences. Here we test a single family with 11 relevant meioses transmitting autosomal dominant acute myelogenous leukemia (AML) and myelodysplasia for linkage to three potential candidate loci. In a different family with inherited AML, linkage to chromosome 21q22.1-22.2 was recently reported; we exclude linkage to 21q22.1-22.2, demonstrating that familial AML is a heterogeneous disease. After reviewing familial leukemia and observing anticipation in the form of a declining age of onset with each generation, we had proposed 9p21-22 and 16q22 as additional candidate loci. Whereas linkage to 9p21-22 can be excluded, the finding of a maximum two-point LOD score of 2.82 with the microsatellite marker D16S522 at a recombination fraction theta = 0 provides evidence supporting linkage to 16q22. Haplotype analysis reveals a 23.5-cM (17.9-Mb) commonly inherited region among all affected family members extending from D16S451 to D1GS289, In order to extract maximum linkage information with missing individuals, incomplete informativeness with individual markers in this interval, and possible deviance from strict autosomal dominant inheritance, we performed nonparametric linkage analysis (NPL) and found a maximum NPL statistic corresponding to a P-value of .00098, close to the maximum conditional probability of linkage expected for a pedigree with this structure. Mutational analysis in this region specifically excludes expansion of the AT-rich minisatellite repeat FRA16B fragile site and the CAG trinucleotide repeat in the E2F-4 transcription factor. The ''repeat expansion detection'' method, capable of detecting dynamic mutation associated with anticipation, more generally excludes large CAG repeat expansion as a cause of leukemia in this family.
Resumo:
Objective: To describe the clinical, speech, hearing, and imaging findings in three members of a Brazilian family with Saethre-Chotzen syndrome (SCS) who presented some unusual characteristics within the spectrum of the syndrome. Design: Clinical evaluation was performed by a multidisciplinary team. Direct sequencing of the polymerase chain reaction amplified coding region of the TWIST1 gene, routine and electrophysiological hearing evaluation, speech evaluation, and imaging studies through computed tomography (CT) scan and magnetic resonance imaging (MRI) were performed. Results: TWIST1 gene analysis revealed a Pro136His mutation in all patients. Hearing evaluation showed peripherial and mixed hearing loss in two of the patients, one of them with severe unilateral microtia. Computed tomography scan showed structural middle ear anomalies, and MRI showed distortion of the skull contour as well as some of the brain structures. Conclusions: We report a previously undescribed TWIST1 gene mutation in patients with SCS. There is evidence that indicates hearing loss (conductive and mixed) can be related both with middle ear (microtia, high jugular bulb, and enlarged vestibules) as well as with brain stem anomalies. Here we discuss the relationship between the gene mutation and the clinical, imaging, speech, and hearing findings.