965 resultados para direct digital radiograph


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a direct digital frequency synthesizer (DDFS) with a 16-bit accumulator, a fourth-order phase domain single-stage Delta Sigma interpolator, and a 300-MS/s 12-bit current-steering DAC based on the Q(2) Random Walk switching scheme. The Delta Sigma interpolator is used to reduce the phase truncation error and the ROM size. The implemented fourth-order single-stage Delta Sigma noise shaper reduces the effective phase bits by four and reduces the ROM size by 16 times. The DDFS prototype is fabricated in a 0.35-mu m CMOS technology with active area of 1.11 mm(2) including a 12-bit DAC. The measured DDFS spurious-free dynamic range (SFDR) is greater than 78 dB using a reduced ROM with 8-bit phase, 12-bit amplitude resolution and a size of 0.09 mm(2). The total power consumption of the DDFS is 200)mW with a 3.3-V power supply.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A compact direct digital frequency synthesizer (DDFS) for system-on-chip (SoC) is developed in this paper. For smaller chip size and lower power consumption, the phase to sine mapping data is compressed by using sine symmetry technique, sine-phase difference technique, quad line approximation (QLA) technique and quantization and error read only memory (QE-ROM) technique. The ROM size is reduced by 98 % using the techniques mentioned above. A compact DDFS chip with 32-bit phase storage depth and a 10-bit on-chip digital to analog converter(DAC) has been successfully implemented using standard 0.35um CMOS process. The core area of the DDFS is 1.6mm(2). It consumes 167 mW at 3.3V, and its spurious free dynamic range (SFDR) is 61dB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a direct digital frequency synthesizer (DDFS) with a 16-bit accumulator, a 4th-order single-stage pipelined delta-sigma interpolator and a 300MS/s 12-bit current-steering DAC based on Q(2) Random Walk switching scheme. The delta-sigma interpolator is used to reduce the phase truncation error and the ROM size. The measured spurious-free dynamic range (SFDR) is greater than 80 dB for 8-bit phase value and 12-bit sine-amplitude output. The DDFS prototype is fabricated in a 0.35um CMOS technology with core area of 1.11mm(2).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a direct digital frequency synthesizer (DDFS) with a 16-bit accumulator, a fourth-order phase domain single-stage Delta Sigma interpolator, and a 300-MS/s 12-bit current-steering DAC based on the Q(2) Random Walk switching scheme. The Delta Sigma interpolator is used to reduce the phase truncation error and the ROM size. The implemented fourth-order single-stage Delta Sigma noise shaper reduces the effective phase bits by four and reduces the ROM size by 16 times. The DDFS prototype is fabricated in a 0.35-mu m CMOS technology with active area of 1.11 mm(2) including a 12-bit DAC. The measured DDFS spurious-free dynamic range (SFDR) is greater than 78 dB using a reduced ROM with 8-bit phase, 12-bit amplitude resolution and a size of 0.09 mm(2). The total power consumption of the DDFS is 200)mW with a 3.3-V power supply.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a high speed ROM-less direct digital frequency synthesizer (DDFS) which has a phase resolution of 32 bits and a magnitude resolution of 10 bits. A 10-bit nonlinear segmented DAC is used in place of the ROM look-up table for phase-to-sine amplitude conversion and the linear DAC in a conventional DDFS.The design procedure for implementing the nonlinear DAC is presented. To ensure high speed, current mode logic (CML) is used. The chip is implemented in Chartered 0.35μm COMS technology with active area of 2.0 × 2.5 mm~2 and total power consumption of 400 mW at a single 3.3 V supply voltage. The maximum operating frequency is 850 MHz at room temperature and 1.0 GHz at 0 ℃.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A compact direct digital frequency synthesizer (DDFS) for system-on-chip implementation of the high precision rubidium atomic frequency standard is developed. For small chip size and low power consumption, the phase to sine mapping data is compressed using sine symmetry technique, sine-phase difference technique, quad line approximation technique,and quantization and error read only memory (QE-ROM) technique. The ROM size is reduced by 98% using these techniques. A compact DDFS chip with 32bit phase storage depth and a 10bit on-chip digital to analog converter has been successfully implemented using a standard 0.35μm CMOS process. The core area of the DDFS is 1.6mm^2. It consumes 167mW at 3.3V,and its spurious free dynamic range is 61dB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: the purpose of this in vivo study was to compare the accuracy of primary incisor length determined by direct digital radiography (straight-line measurement and grid superimposition) and measurement of the actual tooth length. Methods. Twenty-two primary maxillary incisors that required extractions were selected from 3- to 5-year-old children. The teeth were radiographed with an intraoral sensor using the long cone technique and a sensor holder (30-cm focus-to-sensor distance). The exposure time was 03 seconds. Tooth length was estimated by using straight-line and grid measurements provided by the distance measurement feature of the Computed Dental Radiography digital dental imaging system. The actual tooth length was obtained by measuring the extracted tooth with G digital caliper. Data were analyzed statistically by Pearson's correlation coefficient and a paired t test. Results: There were statistically significant differences (P=.007) between the 2 measurement techniques and between the actual tooth lengths and grid measurements. There was no statistically significant difference (P=38) between straight-line measurements and actual tooth lengths, showing that the straight-line measurements were more accurate. Underestimation of the actual tooth length, however, occurred in 45% of the straight-line measurements and in 73% of the grid measurements. Conclusion: It is possible to determine primary tooth length in digital radiographs using onscreen measurements with 0 reasonable degree of accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O objetivo deste estudo foi avaliar a influência do cetoprofeno sobre o processo de reparação óssea em tíbias de ratos, por meio da análise da densidade óptica digital. Vinte ratos da linhagem Wistar foram divididos em 2 grupos: um grupo controle (sem tratamento) e um grupo tratado com cetoprofeno. Os procedimentos experimentais consistiram de: anestesia, cirurgia, administração do cetoprofeno e exame radiográfico. As imagens radiográficas foram adquiridas empregando-se o sensor digital Visualix GX-S-HDI™ e um aparelho de raios X. As radiografias foram realizadas nos períodos baseline (inicial), 7, 14, 21 e 30 dias pós-operatório, sendo a densidade óptica (DO) avaliada por meio do sistema Vix winTM 1.4. Os valores médios da leitura da do obtidos foram analisados estatisticamente por meio de ANOVA e teste de Tukey com nível de significância de 5%. No grupo controle, houve diferença estatisticamente significante (p=0,001) entre o tempo e a DO, enquanto no grupo tratado com cetoprofeno a diferença não foi estatisticamente significante (p=0,100). O grupo controle apresentou as menores proporções de do (%) no 1º e 7º dias e as maiores proporções de do (%) no 14º, 21º e 30º dias, com diferença estatisticamente significante (p=0,001). Não houve diferença estatisticamente significante (p=0,100) entre as proporções médias de do (%) no grupo tratado, independentemente do período de avaliação. Os achados deste trabalho sugerem que houve influência do cetoprofeno sobre o processo de reparo ósseo, uma vez que na primeira semana o medicamento proporcionou aumento na densidade óptica e provocou atraso na neoformação óssea após o 21º dia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To evaluate the accuracy of approximal caries detection comparing enhanced and unenhanced Sidexis CCD-based digital image with Ektaspeed Plus and INSIGHT films. Methods: Fifty-two extracted premolars were imaged under identical standardized geometric and exposure conditions. Four observers, using five points confidence scale, rated 104 approximal surfaces for the presence or absence of carious lesions by means of four image modalities: (1) observer enhanced; (2) unenhanced Sidexis displays; (3) E speed films and (4) F speed film. Histologic sections served as validating criterion for the presence and depth of carious lesions. Diagnostic accuracy was measured as the area beneath the ROC curve. Results: Mean ROC (receiver operating characteristic) curve areas for approximal surfaces were 0.865 (E speed), 0.856 (F speed), 0.816 (unenhanced Sidexis) and 0.776 (observer enhanced). There were no significant differences between unenhanced digital Sidexis and films. Observer enhanced Sidexis images exhibited a statistically significant lower diagnostic accuracy than the film images for two of the observers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this article was to compare the mean value of optical density of four porcelains commonly used for fabrication of inlay/ onlay prostheses using direct digital radiograph. The sample consisted of 20 2-mm thick porcelain specimens (measured by digital pachymeter): Empress (Ivoclair), Simbios (Degussa), Vita Omega 900 and Vitadur Alpha (Vita Zahnfabrik). The values of optical density of the specimens were expressed in millimeters aluminum equivalent (mm eq Al). The samples were X-rayed using two charge coupled devices (CCD) - RVG (Trophy) - Visualix (Gendex) and a phosphor plate system - Digora (Soredex). The optical density reading was performed with Image Tool 1.28 in a total of 110 measurements. Statistical analysis showed that there were statistically significant differences in all materials studied (p < 0.05) regardless of the radiographic system used. The highest optical density value was found for Omega 900 (1.8988 mmeqAl - Visualix - Gendex) and the lowest for Vitadur Alpha (0.8647 - Visualix - Gendex). Thus, the material presenting the highest degree of optical density was Omega 900, Empress and Simbios presented intermediate optical density values, Vitadur Alpha presented the lowest value, and the optical density of porcelains was not influenced by the digital radiography systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to simulate direct-digital cephalometric procedures and to record the head movements of probands. This study was prompted by the Committee for Insurance Matters of the Swiss National Invalidity Insurance which does not accept scanned digital cephalometric radiographs as a basis for its decisions. The reason for this is the required scanning time of several seconds during which even slight head movements can lead to kinetic blurring and landmark displacement. Incorrect angular measurements may result. By means of a Sirognathograph and a cephalostat of non-ferromagnetic material, the head movements of a total of 264 subjects were recorded in three dimensions, with a scanning time of up to 25 seconds. In a second series, the influence of a chin support to reduce head movements was also tested. The results of the first series of tests showed that, with an increasing scan time, movements became greater, mostly in the sagittal plane, and that maximum displacements could occur already at the start of the recording. With a scan time of 10 seconds the median movement amplitude in the vertical dimension was 2.14 mm. The second series of tests revealed a significant reduction in head movements in all dimensions owing to an additional stabilizing chin support. To minimize head movements, scanning times must be reduced and additional head stabilizing elements together with existing ones are necessary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many applications, including communications, test and measurement, and radar, require the generation of signals with a high degree of spectral purity. One method for producing tunable, low-noise source signals is to combine the outputs of multiple direct digital synthesizers (DDSs) arranged in a parallel configuration. In such an approach, if all noise is uncorrelated across channels, the noise will decrease relative to the combined signal power, resulting in a reduction of sideband noise and an increase in SNR. However, in any real array, the broadband noise and spurious components will be correlated to some degree, limiting the gains achieved by parallelization. This thesis examines the potential performance benefits that may arise from using an array of DDSs, with a focus on several types of common DDS errors, including phase noise, phase truncation spurs, quantization noise spurs, and quantizer nonlinearity spurs. Measurements to determine the level of correlation among DDS channels were made on a custom 14-channel DDS testbed. The investigation of the phase noise of a DDS array indicates that the contribution to the phase noise from the DACs can be decreased to a desired level by using a large enough number of channels. In such a system, the phase noise qualities of the source clock and the system cost and complexity will be the main limitations on the phase noise of the DDS array. The study of phase truncation spurs suggests that, at least in our system, the phase truncation spurs are uncorrelated, contrary to the theoretical prediction. We believe this decorrelation is due to the existence of an unidentified mechanism in our DDS array that is unaccounted for in our current operational DDS model. This mechanism, likely due to some timing element in the FPGA, causes some randomness in the relative phases of the truncation spurs from channel to channel each time the DDS array is powered up. This randomness decorrelates the phase truncation spurs, opening the potential for SFDR gain from using a DDS array. The analysis of the correlation of quantization noise spurs in an array of DDSs shows that the total quantization noise power of each DDS channel is uncorrelated for nearly all values of DAC output bits. This suggests that a near N gain in SQNR is possible for an N-channel array of DDSs. This gain will be most apparent for low-bit DACs in which quantization noise is notably higher than the thermal noise contribution. Lastly, the measurements of the correlation of quantizer nonlinearity spurs demonstrate that the second and third harmonics are highly correlated across channels for all frequencies tested. This means that there is no benefit to using an array of DDSs for the problems of in-band quantizer nonlinearities. As a result, alternate methods of harmonic spur management must be employed.