988 resultados para dilute Temperley-Lieb algebra
Resumo:
We present an anisotropic correlated electron model on a periodic lattice, constructed from an R-matrix associated with the Temperley-Lieb algebra. By modification of the coupling of the first and last sites we obtain a model with quantum algebra invariance.
Resumo:
Les algèbres de Temperley-Lieb originales, aussi dites régulières, apparaissent dans de nombreux modèles statistiques sur réseau en deux dimensions: les modèles d'Ising, de Potts, des dimères, celui de Fortuin-Kasteleyn, etc. L'espace d'Hilbert de l'hamiltonien quantique correspondant à chacun de ces modèles est un module pour cette algèbre et la théorie de ses représentations peut être utilisée afin de faciliter la décomposition de l'espace en blocs; la diagonalisation de l'hamiltonien s'en trouve alors grandement simplifiée. L'algèbre de Temperley-Lieb diluée joue un rôle similaire pour des modèles statistiques dilués, par exemple un modèle sur réseau où certains sites peuvent être vides; ses représentations peuvent alors être utilisées pour simplifier l'analyse du modèle comme pour le cas original. Or ceci requiert une connaissance des modules de cette algèbre et de leur structure; un premier article donne une liste complète des modules projectifs indécomposables de l'algèbre diluée et un second les utilise afin de construire une liste complète de tous les modules indécomposables des algèbres originale et diluée. La structure des modules est décrite en termes de facteurs de composition et par leurs groupes d'homomorphismes. Le produit de fusion sur l'algèbre de Temperley-Lieb originale permet de «multiplier» ensemble deux modules sur cette algèbre pour en obtenir un autre. Il a été montré que ce produit pouvait servir dans la diagonalisation d'hamiltoniens et, selon certaines conjectures, il pourrait également être utilisé pour étudier le comportement de modèles sur réseaux dans la limite continue. Un troisième article construit une généralisation du produit de fusion pour les algèbres diluées, puis présente une méthode pour le calculer. Le produit de fusion est alors calculé pour les classes de modules indécomposables les plus communes pour les deux familles, originale et diluée, ce qui vient ajouter à la liste incomplète des produits de fusion déjà calculés par d'autres chercheurs pour la famille originale. Finalement, il s'avère que les algèbres de Temperley-Lieb peuvent être associées à une catégorie monoïdale tressée, dont la structure est compatible avec le produit de fusion décrit ci-dessus. Le quatrième article calcule explicitement ce tressage, d'abord sur la catégorie des algèbres, puis sur la catégorie des modules sur ces algèbres. Il montre également comment ce tressage permet d'obtenir des solutions aux équations de Yang-Baxter, qui peuvent alors être utilisées afin de construire des modèles intégrables sur réseaux.
Resumo:
Les algèbres de Temperley-Lieb originales, aussi dites régulières, apparaissent dans de nombreux modèles statistiques sur réseau en deux dimensions: les modèles d'Ising, de Potts, des dimères, celui de Fortuin-Kasteleyn, etc. L'espace d'Hilbert de l'hamiltonien quantique correspondant à chacun de ces modèles est un module pour cette algèbre et la théorie de ses représentations peut être utilisée afin de faciliter la décomposition de l'espace en blocs; la diagonalisation de l'hamiltonien s'en trouve alors grandement simplifiée. L'algèbre de Temperley-Lieb diluée joue un rôle similaire pour des modèles statistiques dilués, par exemple un modèle sur réseau où certains sites peuvent être vides; ses représentations peuvent alors être utilisées pour simplifier l'analyse du modèle comme pour le cas original. Or ceci requiert une connaissance des modules de cette algèbre et de leur structure; un premier article donne une liste complète des modules projectifs indécomposables de l'algèbre diluée et un second les utilise afin de construire une liste complète de tous les modules indécomposables des algèbres originale et diluée. La structure des modules est décrite en termes de facteurs de composition et par leurs groupes d'homomorphismes. Le produit de fusion sur l'algèbre de Temperley-Lieb originale permet de «multiplier» ensemble deux modules sur cette algèbre pour en obtenir un autre. Il a été montré que ce produit pouvait servir dans la diagonalisation d'hamiltoniens et, selon certaines conjectures, il pourrait également être utilisé pour étudier le comportement de modèles sur réseaux dans la limite continue. Un troisième article construit une généralisation du produit de fusion pour les algèbres diluées, puis présente une méthode pour le calculer. Le produit de fusion est alors calculé pour les classes de modules indécomposables les plus communes pour les deux familles, originale et diluée, ce qui vient ajouter à la liste incomplète des produits de fusion déjà calculés par d'autres chercheurs pour la famille originale. Finalement, il s'avère que les algèbres de Temperley-Lieb peuvent être associées à une catégorie monoïdale tressée, dont la structure est compatible avec le produit de fusion décrit ci-dessus. Le quatrième article calcule explicitement ce tressage, d'abord sur la catégorie des algèbres, puis sur la catégorie des modules sur ces algèbres. Il montre également comment ce tressage permet d'obtenir des solutions aux équations de Yang-Baxter, qui peuvent alors être utilisées afin de construire des modèles intégrables sur réseaux.
Resumo:
We solve the spectrum of quantum spin chains based on representations of the Temperley-Lieb algebra associated with the quantum groups U-q(X-n) for X-n = A(1), B-n, C-n and D-n. The tool is a modified version of the coordinate Bethe ansatz through a suitable choice of the Bethe states which give to all models the same status relative to their diagonalization. All these models have equivalent spectra up to degeneracies and the spectra of the lower-dimensional representations are contained in the higher-dimensional ones. Periodic boundary conditions, free boundary conditions and closed nonlocal boundary conditions are considered. Periodic boundary conditions, unlike free boundary conditions, bleak quantum group invariance. For closed nonlocal cases the models are quantum group invariant as well as periodic in a certain sense.
Resumo:
Cette thèse porte sur les phénomènes critiques survenant dans les modèles bidimensionnels sur réseau. Les résultats sont l'objet de deux articles : le premier porte sur la mesure d'exposants critiques décrivant des objets géométriques du réseau et, le second, sur la construction d'idempotents projetant sur des modules indécomposables de l'algèbre de Temperley-Lieb pour la chaîne de spins XXZ. Le premier article présente des expériences numériques Monte Carlo effectuées pour une famille de modèles de boucles en phase diluée. Baptisés "dilute loop models (DLM)", ceux-ci sont inspirés du modèle O(n) introduit par Nienhuis (1990). La famille est étiquetée par les entiers relativement premiers p et p' ainsi que par un paramètre d'anisotropie. Dans la limite thermodynamique, il est pressenti que le modèle DLM(p,p') soit décrit par une théorie logarithmique des champs conformes de charge centrale c(\kappa)=13-6(\kappa+1/\kappa), où \kappa=p/p' est lié à la fugacité du gaz de boucles \beta=-2\cos\pi/\kappa, pour toute valeur du paramètre d'anisotropie. Les mesures portent sur les exposants critiques représentant la loi d'échelle des objets géométriques suivants : l'interface, le périmètre externe et les liens rouges. L'algorithme Metropolis-Hastings employé, pour lequel nous avons introduit de nombreuses améliorations spécifiques aux modèles dilués, est détaillé. Un traitement statistique rigoureux des données permet des extrapolations coïncidant avec les prédictions théoriques à trois ou quatre chiffres significatifs, malgré des courbes d'extrapolation aux pentes abruptes. Le deuxième article porte sur la décomposition de l'espace de Hilbert \otimes^nC^2 sur lequel la chaîne XXZ de n spins 1/2 agit. La version étudiée ici (Pasquier et Saleur (1990)) est décrite par un hamiltonien H_{XXZ}(q) dépendant d'un paramètre q\in C^\times et s'exprimant comme une somme d'éléments de l'algèbre de Temperley-Lieb TL_n(q). Comme pour les modèles dilués, le spectre de la limite continue de H_{XXZ}(q) semble relié aux théories des champs conformes, le paramètre q déterminant la charge centrale. Les idempotents primitifs de End_{TL_n}\otimes^nC^2 sont obtenus, pour tout q, en termes d'éléments de l'algèbre quantique U_qsl_2 (ou d'une extension) par la dualité de Schur-Weyl quantique. Ces idempotents permettent de construire explicitement les TL_n-modules indécomposables de \otimes^nC^2. Ceux-ci sont tous irréductibles, sauf si q est une racine de l'unité. Cette exception est traitée séparément du cas où q est générique. Les problèmes résolus par ces articles nécessitent une grande variété de résultats et d'outils. Pour cette raison, la thèse comporte plusieurs chapitres préparatoires. Sa structure est la suivante. Le premier chapitre introduit certains concepts communs aux deux articles, notamment une description des phénomènes critiques et de la théorie des champs conformes. Le deuxième chapitre aborde brièvement la question des champs logarithmiques, l'évolution de Schramm-Loewner ainsi que l'algorithme de Metropolis-Hastings. Ces sujets sont nécessaires à la lecture de l'article "Geometric Exponents of Dilute Loop Models" au chapitre 3. Le quatrième chapitre présente les outils algébriques utilisés dans le deuxième article, "The idempotents of the TL_n-module \otimes^nC^2 in terms of elements of U_qsl_2", constituant le chapitre 5. La thèse conclut par un résumé des résultats importants et la proposition d'avenues de recherche qui en découlent.
Resumo:
We solve the spectrum of the closed Temperley-Lieb quantum spin chains using the coordinate Bethe ansatz. These models are invariant under the quantum group U-q[sl(2)].
Resumo:
Le lien entre le spectre de la matrice de transfert de la formulation de spins du modèle de Potts critique et celui de la matrice de transfert double-ligne de la formulation de boucles est établi. La relation entre la trace des deux opérateurs est obtenue dans deux représentations de l'algèbre de Temperley-Lieb cyclique, dont la matrice de transfert de boucles est un élément. Le résultat est exprimé en termes des traces modifiées, qui correspondent à des traces effectuées dans le sous-espace de l'espace de représentation des N-liens se transformant selon la m ième représentation irréductible du groupe cyclique. Le mémoire comporte trois chapitres. Dans le premier chapitre, les résultats essentiels concernant les formulations de spins et de boucles du modèle de Potts sont rappelés. Dans le second chapitre, les propriétés de l'algèbre de Temperley-Lieb cyclique et de ses représentations sont étudiées. Enfin, le lien entre les deux traces est construit dans le troisième chapitre. Le résultat final s'apparente à celui obtenu par Richard et Jacobsen en 2007, mais une nouvelle représentation n'ayant pas été étudiée est aussi investiguée.
Resumo:
Les modèles sur réseau comme ceux de la percolation, d’Ising et de Potts servent à décrire les transitions de phase en deux dimensions. La recherche de leur solution analytique passe par le calcul de la fonction de partition et la diagonalisation de matrices de transfert. Au point critique, ces modèles statistiques bidimensionnels sont invariants sous les transformations conformes et la construction de théories des champs conformes rationnelles, limites continues des modèles statistiques, permet un calcul de la fonction de partition au point critique. Plusieurs chercheurs pensent cependant que le paradigme des théories des champs conformes rationnelles peut être élargi pour inclure les modèles statistiques avec des matrices de transfert non diagonalisables. Ces modèles seraient alors décrits, dans la limite d’échelle, par des théories des champs logarithmiques et les représentations de l’algèbre de Virasoro intervenant dans la description des observables physiques seraient indécomposables. La matrice de transfert de boucles D_N(λ, u), un élément de l’algèbre de Temperley- Lieb, se manifeste dans les théories physiques à l’aide des représentations de connectivités ρ (link modules). L’espace vectoriel sur lequel agit cette représentation se décompose en secteurs étiquetés par un paramètre physique, le nombre d de défauts. L’action de cette représentation ne peut que diminuer ce nombre ou le laisser constant. La thèse est consacrée à l’identification de la structure de Jordan de D_N(λ, u) dans ces représentations. Le paramètre β = 2 cos λ = −(q + 1/q) fixe la théorie : β = 1 pour la percolation et √2 pour le modèle d’Ising, par exemple. Sur la géométrie du ruban, nous montrons que D_N(λ, u) possède les mêmes blocs de Jordan que F_N, son plus haut coefficient de Fourier. Nous étudions la non diagonalisabilité de F_N à l’aide des divergences de certaines composantes de ses vecteurs propres, qui apparaissent aux valeurs critiques de λ. Nous prouvons dans ρ(D_N(λ, u)) l’existence de cellules de Jordan intersectorielles, de rang 2 et couplant des secteurs d, d′ lorsque certaines contraintes sur λ, d, d′ et N sont satisfaites. Pour le modèle de polymères denses critique (β = 0) sur le ruban, les valeurs propres de ρ(D_N(λ, u)) étaient connues, mais les dégénérescences conjecturées. En construisant un isomorphisme entre les modules de connectivités et un sous-espace des modules de spins du modèle XXZ en q = i, nous prouvons cette conjecture. Nous montrons aussi que la restriction de l’hamiltonien de boucles à un secteur donné est diagonalisable et trouvons la forme de Jordan exacte de l’hamiltonien XX, non triviale pour N pair seulement. Enfin nous étudions la structure de Jordan de la matrice de transfert T_N(λ, ν) pour des conditions aux frontières périodiques. La matrice T_N(λ, ν) a des blocs de Jordan intrasectoriels et intersectoriels lorsque λ = πa/b, et a, b ∈ Z×. L’approche par F_N admet une généralisation qui permet de diagnostiquer des cellules intersectorielles dont le rang excède 2 dans certains cas et peut croître indéfiniment avec N. Pour les blocs de Jordan intrasectoriels, nous montrons que les représentations de connectivités sur le cylindre et celles du modèle XXZ sont isomorphes sauf pour certaines valeurs précises de q et du paramètre de torsion v. En utilisant le comportement de la transformation i_N^d dans un voisinage des valeurs critiques (q_c, v_c), nous construisons explicitement des vecteurs généralisés de Jordan de rang 2 et discutons l’existence de blocs de Jordan intrasectoriels de plus haut rang.
Resumo:
In this work three capillary columns, one with uncoated inner wall and two with covalently-bound internal coatings - poly(vinyl alcohol) (PVA) and poly(dimethylacrylamide) (PDMA) - both covalently covered - were used to separate DNA fragments and compared to DNA separation using replaceable polymer solutions. The separations were performed using hydroxyethylcellulose (HEC) (90-105 kDa) in concentrations ranging from 0.00 to 2.00% m/v. The results indicated that the separation efficiency was higher in the PVA capillary than in the PDMA in all evaluated concentrations of HEC. In addition, higher resolution was also observed in PVA-coated capillary since in PDMA the shape of the peaks was not reproducible when subsequent runs were performed. Contrary to what has previously been reported in the literature, no reasonable separation was possible in bare fused silica.
Resumo:
A simple and completely general representation of the exact exchange-correlation functional of density-functional theory is derived from the universal Lieb-Oxford bound, which holds for any Coulomb-interacting system. This representation leads to an alternative point of view on popular hybrid functionals, providing a rationale for why they work and how they can be constructed. A similar representation of the exact correlation functional allows to construct fully nonempirical hyper-generalized-gradient approximations (HGGAs), radically departing from established paradigms of functional construction. Numerical tests of these HGGAs for atomic and molecular correlation energies and molecular atomization energies show that even simple HGGAs match or outperform state-of-the-art correlation functionals currently used in solid-state physics and quantum chemistry.
Resumo:
Given a separable unital C*-algebra C with norm parallel to center dot parallel to, let E-n denote the Banach-space completion of the C-valued Schwartz space on R-n with norm parallel to f parallel to(2)=parallel to < f, f >parallel to(1/2), < f, g >=integral f(x)* g(x)dx. The assignment of the pseudodifferential operator A=a(x,D) with C-valued symbol a(x,xi) to each smooth function with bounded derivatives a is an element of B-C(R-2n) defines an injective mapping O, from B-C(R-2n) to the set H of all operators with smooth orbit under the canonical action of the Heisenberg group on the algebra of all adjointable operators on the Hilbert module E-n. In this paper, we construct a left-inverse S for O and prove that S is injective if C is commutative. This generalizes Cordes' description of H in the scalar case. Combined with previous results of the second author, our main theorem implies that, given a skew-symmetric n x n matrix J and if C is commutative, then any A is an element of H which commutes with every pseudodifferential operator with symbol F(x+J xi), F is an element of B-C(R-n), is a pseudodifferential operator with symbol G(x - J xi), for some G is an element of B-C(R-n). That was conjectured by Rieffel.
Resumo:
Experiments based on a 2(3) central composite full factorial design were carried out in 200-ml stainless-steel containers to study the pretreatment, with dilute sulfuric acid, of a sugarcane bagasse sample obtained from a local sugar-alcohol mill. The independent variables selected for study were temperature, varied from 112.5A degrees C to 157.5A degrees C, residence time, varied from 5.0 to 35.0 min, and sulfuric acid concentration, varied from 0.0% to 3.0% (w/v). Bagasse loading of 15% (w/w) was used in all experiments. Statistical analysis of the experimental results showed that all three independent variables significantly influenced the response variables, namely the bagasse solubilization, efficiency of xylose recovery in the hemicellulosic hydrolysate, efficiency of cellulose enzymatic saccharification, and percentages of cellulose, hemicellulose, and lignin in the pretreated solids. Temperature was the factor that influenced the response variables the most, followed by acid concentration and residence time, in that order. Although harsher pretreatment conditions promoted almost complete removal of the hemicellulosic fraction, the amount of xylose recovered in the hemicellulosic hydrolysate did not exceed 61.8% of the maximum theoretical value. Cellulose enzymatic saccharification was favored by more efficient removal of hemicellulose during the pretreatment. However, detoxification of the hemicellulosic hydrolysate was necessary for better bioconversion of the sugars to ethanol.
Resumo:
This study aimed to correlate the efficiency of enzymatic hydrolysis of the cellulose contained in a sugarcane bagasse sample pretreated with dilute H(2)SO(4) with the levels of independent variables such as initial content of solids and loadings of enzymes and surfactant (Tween 20), for two cellulolytic commercial preparations. The preparations, designated cellulase I and cellulase II, were characterized regarding the activities of total cellulases, endoglucanase, cellobiohydrolase, cellobiase, beta-glucosidase, xylanase, and phenoloxidases (laccase, manganese and lignin peroxidases), as well as protein contents. Both extracts showed complete cellulolytic complexes and considerable activities of xylanases, without activities of phenoloxidases. For the enzymatic hydrolyses, two 2(3) central composite full factorial designs were employed to evaluate the effects caused by the initial content of solids (1.19-4.81%, w/w) and loadings of enzymes (1.9-38.1 FPU/g bagasse) and Tween 20 (0.0-0.1 g/g bagasse) on the cellulose digestibility. Within 24 h of enzymatic hydrolysis, all three independent variables influenced the conversion of cellulose by cellulase I. Using cellulase II, only enzyme and surfactant loadings showed significant effects on cellulose conversion. An additional experiment demonstrated the possibility of increasing the initial content of solids to values much higher than 4.81% (w/w) without compromising the efficiency of cellulose conversion, consequently improving the glucose concentration in the hydrolysate.
Resumo:
We describe the realization of the super-Reshetikhin-Semenov-Tian-Shansky (RS) algebra in quantum affine superalgebras, thus generalizing the approach of Frenkel and Reshetikhin to the supersymmetric (and twisted) case. The algebraic homomorphism between the super-RS algebra and the Drinfeld current realization of quantum affine superalgebras is established by using the Gauss decomposition technique of Ding and Frenkel. As an application, we obtain Drinfeld realization of quantum affine superalgebra U-q [osp(1/2)((1))] and its degeneration - central extended super-Yangian double DY(h over bar) [osp(1/2)((1))].