948 resultados para control error


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This letter proposes a simple tuning algorithm for digital deadbeat control based on error correlation. By injecting a square-wave reference input and calculating the correlation of the control error, a gain correction for deadbeat control is obtained. The proposed solution is simple, it requires a short tuning time, and it is suitable for different DC-DC converter topologies. Simulation and experimental results on synchronous buck converters confirm the properties of the proposed tuning algorithm.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The load–frequency control (LFC) problem has been one of the major subjects in a power system. In practice, LFC systems use proportional–integral (PI) controllers. However since these controllers are designed using a linear model, the non-linearities of the system are not accounted for and they are incapable of gaining good dynamical performance for a wide range of operating conditions in a multi-area power system. A strategy for solving this problem because of the distributed nature of a multi-area power system is presented by using a multi-agent reinforcement learning (MARL) approach. It consists of two agents in each power area; the estimator agent provides the area control error (ACE) signal based on the frequency bias estimation and the controller agent uses reinforcement learning to control the power system in which genetic algorithm optimisation is used to tune its parameters. This method does not depend on any knowledge of the system and it admits considerable flexibility in defining the control objective. Also, by finding the ACE signal based on the frequency bias estimation the LFC performance is improved and by using the MARL parallel, computation is realised, leading to a high degree of scalability. Here, to illustrate the accuracy of the proposed approach, a three-area power system example is given with two scenarios.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper formulates the automatic generation control (AGC) problem as a stochastic multistage decision problem. A strategy for solving this new AGC problem formulation is presented by using a reinforcement learning (RL) approach This method of obtaining an AGC controller does not depend on any knowledge of the system model and more importantly it admits considerable flexibility in defining the control objective. Two specific RL based AGC algorithms are presented. The first algorithm uses the traditional control objective of limiting area control error (ACE) excursions, where as, in the second algorithm, the controller can restore the load-generation balance by only monitoring deviation in tie line flows and system frequency and it does not need to know or estimate the composite ACE signal as is done by all current approaches. The effectiveness and versatility of the approaches has been demonstrated using a two area AGC model. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents the design and implementation of a learning controller for the Automatic Generation Control (AGC) in power systems based on a reinforcement learning (RL) framework. In contrast to the recent RL scheme for AGC proposed by us, the present method permits handling of power system variables such as Area Control Error (ACE) and deviations from scheduled frequency and tie-line flows as continuous variables. (In the earlier scheme, these variables have to be quantized into finitely many levels). The optimal control law is arrived at in the RL framework by making use of Q-learning strategy. Since the state variables are continuous, we propose the use of Radial Basis Function (RBF) neural networks to compute the Q-values for a given input state. Since, in this application we cannot provide training data appropriate for the standard supervised learning framework, a reinforcement learning algorithm is employed to train the RBF network. We also employ a novel exploration strategy, based on a Learning Automata algorithm,for generating training samples during Q-learning. The proposed scheme, in addition to being simple to implement, inherits all the attractive features of an RL scheme such as model independent design, flexibility in control objective specification, robustness etc. Two implementations of the proposed approach are presented. Through simulation studies the attractiveness of this approach is demonstrated.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper proposes an approach of optimal sensitivity applied in the tertiary loop of the automatic generation control. The approach is based on the theorem of non-linear perturbation. From an optimal operation point obtained by an optimal power flow a new optimal operation point is directly determined after a perturbation, i.e., without the necessity of an iterative process. This new optimal operation point satisfies the constraints of the problem for small perturbation in the loads. The participation factors and the voltage set point of the automatic voltage regulators (AVR) of the generators are determined by the technique of optimal sensitivity, considering the effects of the active power losses minimization and the network constraints. The participation factors and voltage set point of the generators are supplied directly to a computational program of dynamic simulation of the automatic generation control, named by power sensitivity mode. Test results are presented to show the good performance of this approach. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The number of electronic devices connected to agricultural machinery is increasing to support new agricultural practices tasks related to the Precision Agriculture such as spatial variability mapping and Variable Rate Technology (VRT). The Distributed Control System (DCS) is a suitable solution for decentralization of the data acquisition system and the Controller Area Network (CAN) is the major trend among the embedded communications protocols for agricultural machinery and vehicles. The application of soil correctives is a typical problem in Brazil. The efficiency of this correction process is highly dependent of the inputs way at soil and the occurrence of errors affects directly the agricultural yield. To handle this problem, this paper presents the development of a CAN-based distributed control system for a VRT system of soil corrective in agricultural machinery. The VRT system is composed by a tractor-implement that applies a desired rate of inputs according to the georeferenced prescription map of the farm field to support PA (Precision Agriculture). The performance evaluation of the CAN-based VRT system was done by experimental tests and analyzing the CAN messages transmitted in the operation of the entire system. The results of the control error according to the necessity of agricultural application allow conclude that the developed VRT system is suitable for the agricultural productions reaching an acceptable response time and application error. The CAN-Based DCS solution applied in the VRT system reduced the complexity of the control system, easing the installation and maintenance. The use of VRT system allowed applying only the required inputs, increasing the efficiency operation and minimizing the environmental impact.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Adolescence is characterized by dramatic hormonal, physical, and psychological changes, and is a period of risk for affective and anxiety disorders. Pubertal development during adolescence plays a major role in the emergence of these disorders, particularly among girls. Thus, it is critical to identify early biomarkers of risk. One potential biomarker, the error-related negativity (ERN), is an event-related potential following an erroneous response. Individuals with an anxiety disorder demonstrate a greater ERN than healthy comparisons, an association which is stronger in adolescence, suggesting that pubertal development may play a role in the ERN as a predictor of anxiety. One form of anxiety often observed in adolescence, particularly among girls, is social anxiety, which is defined as anxiety elicited by social-evaluative contexts. In adults, enhancements of the ERN in social-evaluative contexts is positively related to social anxiety symptoms, suggesting that the ERN in social contexts may serve as a biomarker for social anxiety. This dissertation examined the ERN in and its relation with puberty and social anxiety among 76 adolescent girls. Adolescent girls completed a flanker task in two different

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, a novel MPC strategy is proposed, and referred to as asso MPC. The new paradigm features an 1-regularised least squares loss function, in which the control error variance competes with the sum of input channels magnitude (or slew rate) over the whole horizon length. This cost choice is motivated by the successful development of LASSO theory in signal processing and machine learning. In the latter fields, sum-of-norms regularisation have shown a strong capability to provide robust and sparse solutions for system identification and feature selection. In this paper, a discrete-time dual-mode asso MPC is formulated, and its stability is proven by application of standard MPC arguments. The controller is then tested for the problem of ship course keeping and roll reduction with rudder and fins, in a directional stochastic sea. Simulations show the asso MPC to inherit positive features from its corresponding regressor: extreme reduction of decision variables' magnitude, namely, actuators' magnitude (or variations), with a finite energy error, being particularly promising for over-actuated systems. © 2012 AACC American Automatic Control Council).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Transmission Control Protocol (TCP) has been the protocol of choice for many Internet applications requiring reliable connections. The design of TCP has been challenged by the extension of connections over wireless links. We ask a fundamental question: What is the basic predictive power of TCP of network state, including wireless error conditions? The goal is to improve or readily exploit this predictive power to enable TCP (or variants) to perform well in generalized network settings. To that end, we use Maximum Likelihood Ratio tests to evaluate TCP as a detector/estimator. We quantify how well network state can be estimated, given network response such as distributions of packet delays or TCP throughput that are conditioned on the type of packet loss. Using our model-based approach and extensive simulations, we demonstrate that congestion-induced losses and losses due to wireless transmission errors produce sufficiently different statistics upon which an efficient detector can be built; distributions of network loads can provide effective means for estimating packet loss type; and packet delay is a better signal of network state than short-term throughput. We demonstrate how estimation accuracy is influenced by different proportions of congestion versus wireless losses and penalties on incorrect estimation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The current congestion-oriented design of TCP hinders its ability to perform well in hybrid wireless/wired networks. We propose a new improvement on TCP NewReno (NewReno-FF) using a new loss labeling technique to discriminate wireless from congestion losses. The proposed technique is based on the estimation of average and variance of the round trip time using a filter cal led Flip Flop filter that is augmented with history information. We show the comparative performance of TCP NewReno, NewReno-FF, and TCP Westwood through extensive simulations. We study the fundamental gains and limits using TCP NewReno with varying Loss Labeling accuracy (NewReno-LL) as a benchmark. Lastly our investigation opens up important research directions. First, there is a need for a finer grained classification of losses (even within congestion and wireless losses) for TCP in heterogeneous networks. Second, it is essential to develop an appropriate control strategy for recovery after the correct classification of a packet loss.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wind power is one of the most developed renewable energy resources worldwide. To integrate offshore wind farms to onshore grids, the high-voltage direct current (HVDC) transmission cables interfaced with voltage source converters (VSCs) are considered to be a better solution than conventional approaches. Proper DC voltage indicates successive power transfer. To connect more than one onshore grid, the DC voltage droop control is one of the most popular methods to share the control burden between different terminals. However, the challenges are that small droop gains will cause voltage deviations, while higher droop gain settings will cause large oscillations. This study aims to enhance the performance of the traditional droop controller by considering the DC cable dynamics. Based on the backstepping control concept, DC cables are modelled with a series of capacitors and inductors. The final droop control law is deduced step-by-step from the original remote side. At each step the control error from the previous step is considered. Simulation results show that both the voltage deviations and oscillations can be effectively reduced using the proposed method. Further, power sharing between different terminals can be effectively simplified such that it correlates linearly with the droop gains, thus enabling simple yet accurate system operation and control.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work develops a robustness analysis with respect to the modeling errors, being applied to the strategies of indirect control using Artificial Neural Networks - ANN s, belong to the multilayer feedforward perceptron class with on-line training based on gradient method (backpropagation). The presented schemes are called Indirect Hybrid Control and Indirect Neural Control. They are presented two Robustness Theorems, being one for each proposed indirect control scheme, which allow the computation of the maximum steady-state control error that will occur due to the modeling error what is caused by the neural identifier, either for the closed loop configuration having a conventional controller - Indirect Hybrid Control, or for the closed loop configuration having a neural controller - Indirect Neural Control. Considering that the robustness analysis is restrict only to the steady-state plant behavior, this work also includes a stability analysis transcription that is suitable for multilayer perceptron class of ANN s trained with backpropagation algorithm, to assure the convergence and stability of the used neural systems. By other side, the boundness of the initial transient behavior is assured by the assumption that the plant is BIBO (Bounded Input, Bounded Output) stable. The Robustness Theorems were tested on the proposed indirect control strategies, while applied to regulation control of simulated examples using nonlinear plants, and its results are presented

Relevância:

60.00% 60.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Integration of biometrics is considered as an attractive solution for the issues associated with password based human authentication as well as for secure storage and release of cryptographic keys which is one of the critical issues associated with modern cryptography. However, the widespread popularity of bio-cryptographic solutions are somewhat restricted by the fuzziness associated with biometric measurements. Therefore, error control mechanisms must be adopted to make sure that fuzziness of biometric inputs can be sufficiently countered. In this paper, we have outlined such existing techniques used in bio-cryptography while explaining how they are deployed in different types of solutions. Finally, we have elaborated on the important facts to be considered when choosing appropriate error correction mechanisms for a particular biometric based solution.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A constant switching frequency current error space vector-based hysteresis controller for two-level voltage source inverter-fed induction motor (IM) drives is proposed in this study. The proposed controller is capable of driving the IM in the entire speed range extending to the six-step mode. The proposed controller uses the parabolic boundary, reported earlier, for vector selection in a sector, but uses simple, fast and self-adaptive sector identification logic for sector change detection in the entire modulation range. This new scheme detects the sector change using the change in direction of current error along the axes jA, jB and jC. Most of the previous schemes use an outer boundary for sector change detection. So the current error goes outside the boundary six times during sector change, in one cycle,, introducing additional fifth and seventh harmonic components in phase current. This may cause sixth harmonic torque pulsations in the motor and spread in the harmonic spectrum of phase voltage. The proposed new scheme detects the sector change fast and accurately eliminating the chance of introducing additional fifth and seventh harmonic components in phase current and provides harmonic spectrum of phase voltage, which exactly matches with that of constant switching frequency voltage-controlled space vector pulse width modulation (VC-SVPWM)-based two-level inverter-fed drives.