996 resultados para complex emergence
Resumo:
The linking of North and South America by the Isthmus of Panama had major impacts on global climate, oceanic and atmospheric currents, and biodiversity, yet the timing of this critical event remains contentious. The Isthmus is traditionally understood to have fully closed by ca. 3.5 million years ago (Ma), and this date has been used as a benchmark for oceanographic, climatic, and evolutionary research, but recent evidence suggests a more complex geological formation. Here, we analyze both molecular and fossil data to evaluate the tempo of biotic exchange across the Americas in light of geological evidence. We demonstrate significant waves of dispersal of terrestrial organisms at approximately ca. 20 and 6 Ma and corresponding events separating marine organisms in the Atlantic and Pacific oceans at ca. 23 and 7 Ma. The direction of dispersal and their rates were symmetrical until the last ca. 6 Ma, when northern migration of South American lineages increased significantly. Variability among taxa in their timing of dispersal or vicariance across the Isthmus is not explained by the ecological factors tested in these analyses, including biome type, dispersal ability, and elevation preference. Migration was therefore not generally regulated by intrinsic traits but more likely reflects the presence of emergent terrain several millions of years earlier than commonly assumed. These results indicate that the dramatic biotic turnover associated with the Great American Biotic Interchange was a long and complex process that began as early as the Oligocene-Miocene transition.
Resumo:
Abstract The object of game theory lies in the analysis of situations where different social actors have conflicting requirements and where their individual decisions will all influence the global outcome. In this framework, several games have been invented to capture the essence of various dilemmas encountered in many common important socio-economic situations. Even though these games often succeed in helping us understand human or animal behavior in interactive settings, some experiments have shown that people tend to cooperate with each other in situations for which classical game theory strongly recommends them to do the exact opposite. Several mechanisms have been invoked to try to explain the emergence of this unexpected cooperative attitude. Among them, repeated interaction, reputation, and belonging to a recognizable group have often been mentioned. However, the work of Nowak and May (1992) showed that the simple fact of arranging the players according to a spatial structure and only allowing them to interact with their immediate neighbors is sufficient to sustain a certain amount of cooperation even when the game is played anonymously and without repetition. Nowak and May's study and much of the following work was based on regular structures such as two-dimensional grids. Axelrod et al. (2002) showed that by randomizing the choice of neighbors, i.e. by actually giving up a strictly local geographical structure, cooperation can still emerge, provided that the interaction patterns remain stable in time. This is a first step towards a social network structure. However, following pioneering work by sociologists in the sixties such as that of Milgram (1967), in the last few years it has become apparent that many social and biological interaction networks, and even some technological networks, have particular, and partly unexpected, properties that set them apart from regular or random graphs. Among other things, they usually display broad degree distributions, and show small-world topological structure. Roughly speaking, a small-world graph is a network where any individual is relatively close, in terms of social ties, to any other individual, a property also found in random graphs but not in regular lattices. However, in contrast with random graphs, small-world networks also have a certain amount of local structure, as measured, for instance, by a quantity called the clustering coefficient. In the same vein, many real conflicting situations in economy and sociology are not well described neither by a fixed geographical position of the individuals in a regular lattice, nor by a random graph. Furthermore, it is a known fact that network structure can highly influence dynamical phenomena such as the way diseases spread across a population and ideas or information get transmitted. Therefore, in the last decade, research attention has naturally shifted from random and regular graphs towards better models of social interaction structures. The primary goal of this work is to discover whether or not the underlying graph structure of real social networks could give explanations as to why one finds higher levels of cooperation in populations of human beings or animals than what is prescribed by classical game theory. To meet this objective, I start by thoroughly studying a real scientific coauthorship network and showing how it differs from biological or technological networks using divers statistical measurements. Furthermore, I extract and describe its community structure taking into account the intensity of a collaboration. Finally, I investigate the temporal evolution of the network, from its inception to its state at the time of the study in 2006, suggesting also an effective view of it as opposed to a historical one. Thereafter, I combine evolutionary game theory with several network models along with the studied coauthorship network in order to highlight which specific network properties foster cooperation and shed some light on the various mechanisms responsible for the maintenance of this same cooperation. I point out the fact that, to resist defection, cooperators take advantage, whenever possible, of the degree-heterogeneity of social networks and their underlying community structure. Finally, I show that cooperation level and stability depend not only on the game played, but also on the evolutionary dynamic rules used and the individual payoff calculations. Synopsis Le but de la théorie des jeux réside dans l'analyse de situations dans lesquelles différents acteurs sociaux, avec des objectifs souvent conflictuels, doivent individuellement prendre des décisions qui influenceront toutes le résultat global. Dans ce cadre, plusieurs jeux ont été inventés afin de saisir l'essence de divers dilemmes rencontrés dans d'importantes situations socio-économiques. Bien que ces jeux nous permettent souvent de comprendre le comportement d'êtres humains ou d'animaux en interactions, des expériences ont montré que les individus ont parfois tendance à coopérer dans des situations pour lesquelles la théorie classique des jeux prescrit de faire le contraire. Plusieurs mécanismes ont été invoqués pour tenter d'expliquer l'émergence de ce comportement coopératif inattendu. Parmi ceux-ci, la répétition des interactions, la réputation ou encore l'appartenance à des groupes reconnaissables ont souvent été mentionnés. Toutefois, les travaux de Nowak et May (1992) ont montré que le simple fait de disposer les joueurs selon une structure spatiale en leur permettant d'interagir uniquement avec leurs voisins directs est suffisant pour maintenir un certain niveau de coopération même si le jeu est joué de manière anonyme et sans répétitions. L'étude de Nowak et May, ainsi qu'un nombre substantiel de travaux qui ont suivi, étaient basés sur des structures régulières telles que des grilles à deux dimensions. Axelrod et al. (2002) ont montré qu'en randomisant le choix des voisins, i.e. en abandonnant une localisation géographique stricte, la coopération peut malgré tout émerger, pour autant que les schémas d'interactions restent stables au cours du temps. Ceci est un premier pas en direction d'une structure de réseau social. Toutefois, suite aux travaux précurseurs de sociologues des années soixante, tels que ceux de Milgram (1967), il est devenu clair ces dernières années qu'une grande partie des réseaux d'interactions sociaux et biologiques, et même quelques réseaux technologiques, possèdent des propriétés particulières, et partiellement inattendues, qui les distinguent de graphes réguliers ou aléatoires. Entre autres, ils affichent en général une distribution du degré relativement large ainsi qu'une structure de "petit-monde". Grossièrement parlant, un graphe "petit-monde" est un réseau où tout individu se trouve relativement près de tout autre individu en termes de distance sociale, une propriété également présente dans les graphes aléatoires mais absente des grilles régulières. Par contre, les réseaux "petit-monde" ont, contrairement aux graphes aléatoires, une certaine structure de localité, mesurée par exemple par une quantité appelée le "coefficient de clustering". Dans le même esprit, plusieurs situations réelles de conflit en économie et sociologie ne sont pas bien décrites ni par des positions géographiquement fixes des individus en grilles régulières, ni par des graphes aléatoires. De plus, il est bien connu que la structure même d'un réseau peut passablement influencer des phénomènes dynamiques tels que la manière qu'a une maladie de se répandre à travers une population, ou encore la façon dont des idées ou une information s'y propagent. Ainsi, durant cette dernière décennie, l'attention de la recherche s'est tout naturellement déplacée des graphes aléatoires et réguliers vers de meilleurs modèles de structure d'interactions sociales. L'objectif principal de ce travail est de découvrir si la structure sous-jacente de graphe de vrais réseaux sociaux peut fournir des explications quant aux raisons pour lesquelles on trouve, chez certains groupes d'êtres humains ou d'animaux, des niveaux de coopération supérieurs à ce qui est prescrit par la théorie classique des jeux. Dans l'optique d'atteindre ce but, je commence par étudier un véritable réseau de collaborations scientifiques et, en utilisant diverses mesures statistiques, je mets en évidence la manière dont il diffère de réseaux biologiques ou technologiques. De plus, j'extrais et je décris sa structure de communautés en tenant compte de l'intensité d'une collaboration. Finalement, j'examine l'évolution temporelle du réseau depuis son origine jusqu'à son état en 2006, date à laquelle l'étude a été effectuée, en suggérant également une vue effective du réseau par opposition à une vue historique. Par la suite, je combine la théorie évolutionnaire des jeux avec des réseaux comprenant plusieurs modèles et le réseau de collaboration susmentionné, afin de déterminer les propriétés structurelles utiles à la promotion de la coopération et les mécanismes responsables du maintien de celle-ci. Je mets en évidence le fait que, pour ne pas succomber à la défection, les coopérateurs exploitent dans la mesure du possible l'hétérogénéité des réseaux sociaux en termes de degré ainsi que la structure de communautés sous-jacente de ces mêmes réseaux. Finalement, je montre que le niveau de coopération et sa stabilité dépendent non seulement du jeu joué, mais aussi des règles de la dynamique évolutionnaire utilisées et du calcul du bénéfice d'un individu.
Resumo:
Partial nucleotide sequences of five tomato infecting Begomovirus isolates were determined from DNA-A fragments, corresponding to the 5' region of the replication associated protein gene, the intergenic region and the 5' region of the coat protein gene. Isolate DFM shared 95% identity with Tomato mottle leaf curl virus (TMoLCV), isolates 34, PA-05, and Ta4 were 88% identical to Tomato yellow vein streak virus and isolate DF-BR3 shared 77% identity with TMoLCV. Recombination analysis indicated that isolate DF-BR3 was a chimaera, and it provided evidence that there is a complex and actively recombining population of tomato infecting begomoviruses in Brazil.
Resumo:
In this study, genotyping techniques including staphylococcal chromosomal cassette mec (SCCmec) typing, pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST) and restriction-modification tests were used to compare the molecular characteristics of methicillin-resistant Staphylococcus aureus (MRSA) isolates recovered at two times within a 10-year interval (1998 and 2008) from a tertiary Brazilian hospital. In addition, the antimicrobial susceptibility profiles were analyzed. All 48 MRSA isolates from 1998 and 85.7% from 2008 (48/56 isolates) displayed multidrug-resistance phenotypes and SCCmec III. All but one of the 13 representative SCCmec III isolates belonged to CC8 and had PFGE patterns similar to that of the BMB9393 strain (Brazilian epidemic clone of MRSA; BEC). In 2008, we found an increased susceptibility to rifampicin and chloramphenicol among the SCCmec III isolates. In addition, we detected the entrance of diverse international MRSA lineages susceptible to trimethoprim-sulfamethoxazole (SXT), almost all belonging to CC5. These non-SCCmec III isolates were related to the USA 300 (ST8-SCCmec IV; PFGE-type B), USA 800 (ST5-SCCmec IV; subtype D1), USA 100 (ST5-SCCmec II; subtype D2), and EMRSA-3/Cordobes (ST5-SCCmec I, type C) clones. To the best of our knowledge, this is the first report of the emergence of isolates genetically related to the EMRSA-3/Cordobes clone in southeast Brazil. In this regard, these isolates were the most common non-SCCmec III MRSA in our institution, accounting for 8.9% of all isolates recovered in 2008. Thus, despite the supremacy of BEC isolates in our country, significant changes may occur in local MRSA epidemiology, with possible consequences for the rationality of MRSA empiric therapy.
Resumo:
The emergence and spread of infectious diseases reflects the interaction of ecological and economic factors within an adaptive complex system. We review studies that address the role of economic factors in the emergence and spread of infectious diseases and identify three broad themes. First, the process of macro-economic growth leads to environmental encroaching, which is related to the emergence of infectious diseases. Second, there are a number of mutually reinforcing processes associated with the emergence/spread of infectious diseases. For example, the emergence and spread of infectious diseases can cause significant economic damages, which in turn may create the conditions for further disease spread. Also, the existence of a mutually reinforcing relationship between global trade and macroeconomic growth amplifies the emergence/spread of infectious diseases. Third, microeconomic approaches to infectious disease point to the adaptivity of human behavior, which simultaneously shapes the course of epidemics and responds to it. Most of the applied research has been focused on the first two aspects, and to a lesser extent on the third aspect. With respect to the latter, there is a lack of empirical research aimed at characterizing the behavioral component following a disease outbreak. Future research should seek to fill this gap and develop hierarchical econometric models capable of integrating both macro and micro-economic processes into disease ecology.
Resumo:
The spatial complexity of the distribution of organic matter, chemicals, nutrients, pollutants has been demonstrated to have multifractal nature (Kravchenco et al. [1]). This fact supports the possibility of existence of some emergent heterogeneity structure built under the evolution of the system. The aim of this note is providing a consistent explanation to the mentioned results via an extremely simple model.
Resumo:
This article reports the spread of bla(KPC-2) in the Sao Paulo and Rio de Janeiro states, facilitated by globally spread K. pneumoniae clonal complex 258 (CC258) clones (ST258, ST11, and ST437) and a diversity of plasmids (IncFII, IncN, and IncL/M, two untypeable plasmids carrying Tn4401a or Tn4401b) successfully disseminated among species of the Enterobacteriaceae (Enterobacter cloacae, Serratia marcescens, and Citrobacter freundii). It also constitutes the first description of sequence type 258 (ST258) in Brazil, which was associated with a nosocomial hospital outbreak in Ribeirao Preto city.
Resumo:
The brain is a complex system that, in the normal condition, has emergent properties like those associated with activity-dependent plasticity in learning and memory, and in pathological situations, manifests abnormal long-term phenomena like the epilepsies. Data from our laboratory and from the literature were classified qualitatively as sources of complexity and emergent properties from behavior to electrophysiological, cellular, molecular, and computational levels. We used such models as brainstem-dependent acute audiogenic seizures and forebrain-dependent kindled audiogenic seizures. Additionally we used chemical OF electrical experimental models of temporal lobe epilepsy that induce status epilepticus with behavioral, anatomical, and molecular sequelae such as spontaneous recurrent seizures and long-term plastic changes. Current Computational neuroscience tools will help the interpretation. storage, and sharing of the exponential growth of information derived from those studies. These strategies are considered solutions to deal with the complexity of brain pathologies such as the epilepsies. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
It is a difficult task to avoid the “smart systems” topic when discussing smart prevention and, similarly, it is a difficult task to address smart systems without focusing their ability to learn. Following the same line of thought, in the current reality, it seems a Herculean task (or an irreparable omission) to approach the topic of certified occupational health and safety management systems (OHSMS) without discussing the integrated management systems (IMSs). The available data suggest that seldom are the OHSMS operating as the single management system (MS) in a company so, any statement concerning OHSMS should mainly be interpreted from an integrated perspective. A major distinction between generic systems can be drawn between those that learn, i.e., those systems that have “memory” and those that have not. These former systems are often depicted as adaptive since they take into account past events to deal with novel, similar and future events modifying their structure to enable success in its environment. Often, these systems, present a nonlinear behavior and a huge uncertainty related to the forecasting of some events. This paper seeks to portray, for the first time as we were able to find out, the IMSs as complex adaptive systems (CASs) by listing their properties and dissecting the features that enable them to evolve and self-organize in order to, holistically, fulfil the requirements from different stakeholders and thus thrive by assuring the successful sustainability of a company. Based on the revision of literature carried out, this is the first time that IMSs are pointed out as CASs which may develop fruitful synergies both for the MSs and for CASs communities. By performing a thorough revision of literature and based on some concepts embedded in the “DNA” of the subsystems implementation standards it is intended, specifically, to identify, determine and discuss the properties of a generic IMS that should be considered to classify it as a CAS.
Resumo:
Economies are open complex adaptive systems far from thermodynamic equilibrium, and neo-classical environmental economics seems not to be the best way to describe the behaviour of such systems. Standard econometric analysis (i.e. time series) takes a deterministic and predictive approach, which encourages the search for predictive policy to ‘correct’ environmental problems. Rather, it seems that, because of the characteristics of economic systems, an ex-post analysis is more appropriate, which describes the emergence of such systems’ properties, and which sees policy as a social steering mechanism. With this background, some of the recent empirical work published in the field of ecological economics that follows the approach defended here is presented. Finally, the conclusion is reached that a predictive use of econometrics (i.e. time series analysis) in ecological economics should be limited to cases in which uncertainty decreases, which is not the normal situation when analysing the evolution of economic systems. However, that does not mean we should not use empirical analysis. On the contrary, this is to be encouraged, but from a structural and ex-post point of view.
Resumo:
Abstract Sitting between your past and your future doesn't mean you are in the present. Dakota Skye Complex systems science is an interdisciplinary field grouping under the same umbrella dynamical phenomena from social, natural or mathematical sciences. The emergence of a higher order organization or behavior, transcending that expected of the linear addition of the parts, is a key factor shared by all these systems. Most complex systems can be modeled as networks that represent the interactions amongst the system's components. In addition to the actual nature of the part's interactions, the intrinsic topological structure of underlying network is believed to play a crucial role in the remarkable emergent behaviors exhibited by the systems. Moreover, the topology is also a key a factor to explain the extraordinary flexibility and resilience to perturbations when applied to transmission and diffusion phenomena. In this work, we study the effect of different network structures on the performance and on the fault tolerance of systems in two different contexts. In the first part, we study cellular automata, which are a simple paradigm for distributed computation. Cellular automata are made of basic Boolean computational units, the cells; relying on simple rules and information from- the surrounding cells to perform a global task. The limited visibility of the cells can be modeled as a network, where interactions amongst cells are governed by an underlying structure, usually a regular one. In order to increase the performance of cellular automata, we chose to change its topology. We applied computational principles inspired by Darwinian evolution, called evolutionary algorithms, to alter the system's topological structure starting from either a regular or a random one. The outcome is remarkable, as the resulting topologies find themselves sharing properties of both regular and random network, and display similitudes Watts-Strogtz's small-world network found in social systems. Moreover, the performance and tolerance to probabilistic faults of our small-world like cellular automata surpasses that of regular ones. In the second part, we use the context of biological genetic regulatory networks and, in particular, Kauffman's random Boolean networks model. In some ways, this model is close to cellular automata, although is not expected to perform any task. Instead, it simulates the time-evolution of genetic regulation within living organisms under strict conditions. The original model, though very attractive by it's simplicity, suffered from important shortcomings unveiled by the recent advances in genetics and biology. We propose to use these new discoveries to improve the original model. Firstly, we have used artificial topologies believed to be closer to that of gene regulatory networks. We have also studied actual biological organisms, and used parts of their genetic regulatory networks in our models. Secondly, we have addressed the improbable full synchronicity of the event taking place on. Boolean networks and proposed a more biologically plausible cascading scheme. Finally, we tackled the actual Boolean functions of the model, i.e. the specifics of how genes activate according to the activity of upstream genes, and presented a new update function that takes into account the actual promoting and repressing effects of one gene on another. Our improved models demonstrate the expected, biologically sound, behavior of previous GRN model, yet with superior resistance to perturbations. We believe they are one step closer to the biological reality.
Resumo:
The objective of this essay is to reflect on a possible relation between entropy and emergence. A qualitative, relational approach is followed. We begin by highlighting that entropy includes the concept of dispersal, relevant to our enquiry. Emergence in complex systems arises from the coordinated behavior of their parts. Coordination in turn necessitates recognition between parts, i.e., information exchange. What will be argued here is that the scope of recognition processes between parts is increased when preceded by their dispersal, which multiplies the number of encounters and creates a richer potential for recognition. A process intrinsic to emergence is dissolvence (aka submergence or top-down constraints), which participates in the information-entropy interplay underlying the creation, evolution and breakdown of higher-level entities.
Resumo:
Courtyard houses are attested at several sites in southern Gaul between the 5th and the 1st centuries BC. They represent a new concept when compared to the traditional protohistoric houses of the region and have often been interpreted in terms of Mediterranean, Greek or Italic influences. Regardless of their origin, exogenous influences or evolution, these houses suggest the emergence of social differentiation and elites in several of the main settlements. This article analyses the significance of the various courtyard house categories in the context of local, indigenous societies, while trying to understand the social implications of this new type of residence. In a wider context, the development of domestic architecture during the Iron Age is analysed alongside the relationships between changing uses of space and social changes.
Resumo:
The analysis of the activity of neuronal cultures is considered to be a good proxy of the functional connectivity of in vivo neuronal tissues. Thus, the functional complex network inferred from activity patterns is a promising way to unravel the interplay between structure and functionality of neuronal systems. Here, we monitor the spontaneous self-sustained dynamics in neuronal cultures formed by interconnected aggregates of neurons (clusters). Dynamics is characterized by the fast activation of groups of clusters in sequences termed bursts. The analysis of the time delays between clusters' activations within the bursts allows the reconstruction of the directed functional connectivity of the network. We propose a method to statistically infer this connectivity and analyze the resulting properties of the associated complex networks. Surprisingly enough, in contrast to what has been reported for many biological networks, the clustered neuronal cultures present assortative mixing connectivity values, meaning that there is a preference for clusters to link to other clusters that share similar functional connectivity, as well as a rich-club core, which shapes a"connectivity backbone" in the network. These results point out that the grouping of neurons and the assortative connectivity between clusters are intrinsic survival mechanisms of the culture.
Resumo:
Global challenges, complexity and continuous uncertainty demand development of leadership approaches, employees and multi-organisation constellations. Current leadership theories do not sufficiently address the needs of complex business environments. First of all, before successful leadership models can be applied in practice, leadership needs to shift from the industrial age to the knowledge era. Many leadership models still view leadership solely through the perspective of linear process thinking. In addition, there is not enough knowledge or experience in applying these newer models in practice. Leadership theories continue to be based on the assumption that leaders possess or have access to all the relevant knowledge and capabilities to decide future directions without external advice. In many companies, however, the workforce consists of skilled professionals whose work and related interfaces are so challenging that the leaders cannot grasp all the linked viewpoints and cross-impacts alone. One of the main objectives of this study is to understand how to support participants in organisations and their stakeholders to, through practice-based innovation processes, confront various environments. Another aim is to find effective ways of recognising and reacting to diverse contexts, so companies and other stakeholders are better able to link to knowledge flows and shared value creation processes in advancing joint value to their customers. The main research question of this dissertation is, then, to seek understanding of how to enhance leadership in complex environments. The dissertation can, on the whole, be characterised as a qualitative multiple-case study. The research questions and objectives were investigated through six studies published in international scientific journals. The main methods applied were interviews, action research and a survey. The empirical focus was on Finnish companies, and the research questions were examined in various organisations at the top levels (leaders and managers) and bottom levels (employees) in the context of collaboration between organisations and cooperation between case companies and their client organisations. However, the emphasis of the analysis is the internal and external aspects of organisations, which are conducted in practice-based innovation processes. The results of this study suggest that the Cynefin framework, complexity leadership theory and transformational leadership represent theoretical models applicable to developing leadership through practice-based innovation. In and of themselves, they all support confronting contemporary challenges, but an implementable method for organisations may be constructed by assimilating them into practice-based innovation processes. Recognition of diverse environments, their various contexts and roles in the activities and collaboration of organisations and their interest groups is ever-more important to achieving better interaction in which a strategic or formal status may be bypassed. In innovation processes, it is not necessarily the leader who is in possession of the essential knowledge; thus, it is the role of leadership to offer methods and arenas where different actors may generate advances. Enabling and supporting continuous interaction and integrated knowledge flows is of crucial importance, to achieve emergence of innovations in the activities of organisations and various forms of collaboration. The main contribution of this dissertation relates to applying these new conceptual models in practice. Empirical evidence on the relevance of different leadership roles in practice-based innovation processes in Finnish companies is another valuable contribution. Finally, the dissertation sheds light on the significance of combining complexity science with leadership and innovation theories in research.