998 resultados para combinational digital circuits


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Combinational digital circuits can be evolved automatically using Genetic Algorithms (GA). Until recently this technique used linear chromosomes and and one dimensional crossover and mutation operators. In this paper, a new method for representing combinational digital circuits as 2 Dimensional (2D) chromosomes and suitable 2D crossover and mutation techniques has been proposed. By using this method, the convergence speed of GA can be increased significantly compared to the conventional methods. Moreover, the 2D representation and crossover operation provides the designer with better visualization of the evolved circuits. In addition to this, a technique to display automatically the evolved circuits has been developed with the help of MATLAB

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new approach to the design of combinational digital circuits with multiplexers using Evolutionary techniques. Genetic Algorithm (GA) is used as the optimization tool. Several circuits are synthesized with this method and compared with two design techniques such as standard implementation of logic functions using multiplexers and implementation using Shannon’s decomposition technique using GA. With the proposed method complexity of the circuit and the associated delay can be reduced significantly

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper analyses the performance of a Genetic Algorithm using two new concepts, namely a static fitness function including a discontinuity measure and a fractional-order dynamic fitness function, for the synthesis of combinational logic circuits. In both cases, experiments reveal superior results in terms of speed and convergence to achieve a solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to usage conditions, hazardous environments or intentional causes, physical and virtual systems are subject to faults in their components, which may affect their overall behaviour. In a ‘black-box’ agent modelled by a set of propositional logic rules, in which just a subset of components is externally visible, such faults may only be recognised by examining some output function of the agent. A (fault-free) model of the agent’s system provides the expected output given some input. If the real output differs from that predicted output, then the system is faulty. However, some faults may only become apparent in the system output when appropriate inputs are given. A number of problems regarding both testing and diagnosis thus arise, such as testing a fault, testing the whole system, finding possible faults and differentiating them to locate the correct one. The corresponding optimisation problems of finding solutions that require minimum resources are also very relevant in industry, as is minimal diagnosis. In this dissertation we use a well established set of benchmark circuits to address such diagnostic related problems and propose and develop models with different logics that we formalise and generalise as much as possible. We also prove that all techniques generalise to agents and to multiple faults. The developed multi-valued logics extend the usual Boolean logic (suitable for faultfree models) by encoding values with some dependency (usually on faults). Such logics thus allow modelling an arbitrary number of diagnostic theories. Each problem is subsequently solved with CLP solvers that we implement and discuss, together with a new efficient search technique that we present. We compare our results with other approaches such as SAT (that require substantial duplication of circuits), showing the effectiveness of constraints over multi-valued logics, and also the adequacy of a general set constraint solver (with special inferences over set functions such as cardinality) on other problems. In addition, for an optimisation problem, we integrate local search with a constructive approach (branch-and-bound) using a variety of logics to improve an existing efficient tool based on SAT and ILP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Swarm Intelligence (SI) is the property of a system whereby the collective behaviors of (unsophisticated) agents interacting locally with their environment cause coherent functional global patterns to emerge. Particle swarm optimization (PSO) is a form of SI, and a population-based search algorithm that is initialized with a population of random solutions, called particles. These particles are flying through hyperspace and have two essential reasoning capabilities: their memory of their own best position and knowledge of the swarm's best position. In a PSO scheme each particle flies through the search space with a velocity that is adjusted dynamically according with its historical behavior. Therefore, the particles have a tendency to fly towards the best search area along the search process. This work proposes a PSO based algorithm for logic circuit synthesis. The results show the statistical characteristics of this algorithm with respect to number of generations required to achieve the solutions. It is also presented a comparison with other two Evolutionary Algorithms, namely Genetic and Memetic Algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a probabilistic approach to model the problem of power supply voltage fluctuations. Error probability calculations are shown for some 90-nm technology digital circuits.The analysis here considered gives the timing violation error probability as a new design quality factor in front of conventional techniques that assume the full perfection of the circuit. The evaluation of the error bound can be useful for new design paradigms where retry and self-recoveringtechniques are being applied to the design of high performance processors. The method here described allows to evaluate the performance of these techniques by means of calculating the expected error probability in terms of power supply distribution quality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mixed-signal and analog design on a pre-diffused array is a challenging task, given that the digital array is a linear matrix arrangement of minimum-length transistors. To surmount this drawback a specific discipline for designing analog circuits over such array is required. An important novel technique proposed is the use of TAT (Trapezoidal Associations of Transistors) composite transistors on the semi-custom Sea-Of-Transistors (SOT) array. The analysis and advantages of TAT arrangement are extensively analyzed and demonstrated, with simulation and measurement comparisons to equivalent single transistors. Basic analog cells were also designed as well in full-custom and TAT versions in 1.0mm and 0.5mm digital CMOS technologies. Most of the circuits were prototyped in full-custom and TAT-based on pre-diffused SOT arrays. An innovative demonstration of the TAT technique is shown with the design and implementation of a mixed-signal analog system, i. e., a fully differential 2nd order Sigma-Delta Analog-to-Digital (A/D) modulator, fabricated in both full-custom and SOT array methodologies in 0.5mm CMOS technology from MOSIS foundry. Three test-chips were designed and fabricated in 0.5mm. Two of them are IC chips containing the full-custom and SOT array versions of a 2nd-Order Sigma-Delta A/D modulator. The third IC contains a transistors-structure (TAT and single) and analog cells placed side-by-side, block components (Comparator and Folded-cascode OTA) of the Sigma-Delta modulator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper an approach to the synchronization of chaotic circuits has been reported. It is based on an optically programmable logic cell and the signals involved are fully digital. It is based on the reception of the same input signal on sender and receiver and from this approach, with a posterior correlation between both outputs, an identical chaotic output is obtained in both systems. No conversion from analog to digital signals is needed. The model here presented is based on a computer simulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"August 8, 1969."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliographical references.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present an experimental validation of the reliability increase of digital circuits implemented in XilinxTMFPGAs when they are implemented using the DSPs (Digital Signal Processors) that are available in the reconfigurable device. For this purpose, we have used a fault-injection platform developed by our research group, NESSY [1]. The presented experiments demonstrate that the probability of occurrence of a SEU effect is similar both in the circuits implemented with and without using embedded DSPs. However, the former are more efficient in terms of area usage, which leads to a decrease in the probability of a SEU occurrence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper analyses the performance of a genetic algorithm (GA) in the synthesis of digital circuits using two novel approaches. The first concept consists in improving the static fitness function by including a discontinuity evaluation. The measure of variability in the error of the Boolean table has similarities with the function continuity issue in classical calculus. The second concept extends the static fitness by introducing a fractional-order dynamical evaluation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper analyses the performance of a genetic algorithm (GA) in the synthesis of digital circuits using two novel approaches. The first concept consists in improving the static fitness function by including a discontinuity evaluation. The measure of variability in the error of the Boolean table has similarities with the function continuity issue in classical calculus. The second concept extends the static fitness by introducing a fractional-order dynamical evaluation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic Algorithms (GAs) are adaptive heuristic search algorithm based on the evolutionary ideas of natural selection and genetic. The basic concept of GAs is designed to simulate processes in natural system necessary for evolution, specifically those that follow the principles first laid down by Charles Darwin of survival of the fittest. On the other hand, Particle swarm optimization (PSO) is a population based stochastic optimization technique inspired by social behavior of bird flocking or fish schooling. PSO shares many similarities with evolutionary computation techniques such as GAs. The system is initialized with a population of random solutions and searches for optima by updating generations. However, unlike GA, PSO has no evolution operators such as crossover and mutation. In PSO, the potential solutions, called particles, fly through the problem space by following the current optimum particles. PSO is attractive because there are few parameters to adjust. This paper presents hybridization between a GA algorithm and a PSO algorithm (crossing the two algorithms). The resulting algorithm is applied to the synthesis of combinational logic circuits. With this combination is possible to take advantage of the best features of each particular algorithm.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical and Computer Engineering of the Faculdade de Ciências e Tecnologia of Universidade Nova de Lisboa