975 resultados para coating process


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Composite LiFe0.4Mn0.6PO4/C microspheres are considered advanced cathode materials for electric vehicles and other high-energy density applications due to their advantages of high energy density and excellent cycling stability. LiFe0.4Mn0.6PO4/C microspheres have been produced using a double carbon coating process employing traditional industrial techniques (ball milling, spray-drying and annealing). The obtained LiFe0.4Mn0.6PO4 microspheres exhibit a high discharge capacity of around 166 mA h g-1 at 0.1 C and excellent rate capabilities of 132, 103, and 72 mA h g-1 at 5, 10, and 20 C, respectively. A reversible capacity of about 152 mA h g-1 after 500 cycles at a current density of 1 C indicates an outstanding cycling stability. The excellent electrochemical performance is attributed to the micrometer-sized spheres of double carbon-coated LiFe0.4Mn0.6PO4 nanoparticles with improved electric conductivity and higher Li ion diffusion coefficients, ensuring full redox reactions of all nanoparticles. The results show that the advanced high-energy density cathode materials can be produced using existing industry techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A significant part of film production by the coating industry is based on wet bench processes, where better understanding of their temporal dynamics could facilitate control and optimization. In this work, in situ laser interferometry is applied to study properties of flowing liquids and quantitatively monitor the dip coating batch process. Two oil standards Newtonian, non-volatile, with constant refractive indices and distinct flow properties - were measured under several withdrawing speeds. The dynamics of film physical thickness then depends on time as t(-1/2), and flow characterization becomes possible with high precision (linear slope uncertainty of +/-0.04%). Resulting kinematic viscosities for OP60 and OP400 are 1,17 +/- 0,03. St and 9,9 +/- 0,2 St, respectively. These results agree with nominal values, as provided by the manufacturer. For more complex films (a multi-component sol-gel Zirconyl Chloride aqueous solution) with a varying refractive index, through a direct polarimetric measurement, allowing also determination of the temporal evolution of physical thickness (uncertainty of +/- 0,007 microns) is also determined during dip coating.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crack-free polycrystalline PLZT (Pb,a)(Zr,Ti)O-3 thin films with the perovskite structure were prepared by dir-coating using the Pechinis process. Lead acetate, hydrated lanthanum carbonate, zirconium n-propoxide and titanium isopropoxide were used as raw materials. The viscosity of the solution was adjusted in the range of 20 to 56 cP and the films were deposited by a dip-coating process on silicon (100) as substrate. Solutions with ionic concentration of 0.1 and 0.2 M were used. Thin film deposition was accomplished by dipping the substrates in the solution with control of withdrawal speed from 5 to 20 mm/min. The thin films were thermally treated in two steps: at 300 degreesC amid 650 degreesC. The influence of withdrawal speed. viscosity, heating rate and ionic concentration on the morphology of PLZT thin film was discussed. (C) 2001 Elsevier B.V. Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Initially this thesis examines the various mechanisms by which technology is acquired within anodizing plants. In so doing the history of the evolution of anodizing technology is recorded, with particular reference to the growth of major markets and to the contribution of the marketing efforts of the aluminium industry. The business economics of various types of anodizing plants are analyzed. Consideration is also given to the impact of developments in anodizing technology on production economics and market growth. The economic costs associated with work rejected for process defects are considered. Recent changes in the industry have created conditions whereby information technology has a potentially important role to play in retaining existing knowledge. One such contribution is exemplified by the expert system which has been developed for the identification of anodizing process defects. Instead of using a "rule-based" expert system, a commercial neural networks program has been adapted for the task. The advantages of neural networks over 'rule-based' systems is that they are better suited to production problems, since the actual conditions prevailing when the defect was produced are often not known with certainty. In using the expert system, the user first identifies the process stage at which the defect probably occurred and is then directed to a file enabling the actual defects to be identified. After making this identification, the user can consult a database which gives a more detailed description of the defect, advises on remedial action and provides a bibliography of papers relating to the defect. The database uses a proprietary hypertext program, which also provides rapid cross-referencing to similar types of defect. Additionally, a graphics file can be accessed which (where appropriate) will display a graphic of the defect on screen. A total of 117 defects are included, together with 221 literature references, supplemented by 48 cross-reference hyperlinks. The main text of the thesis contains 179 literature references. (DX186565)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel one-step hydrothermal coating process was used to produce nanohydroxyapatite (nano-HA) coating on a titanium–niobium (TiNb) alloy substrate in a newly designed solution containing calcium and phosphate ions. The morphology of the coating was studied using scanning electron microscopy. The phase identification of the coating was carried out using X-ray diffraction, attenuated total reflectance Fourier transform infrared spectroscopy and transmission electron microscopy. The reaction between the surface of TiNb alloy and the solution during the hydrothermal process was studied by Xray photoelectron spectroscopy. Results show that the coating formed on the surface of TiNb alloy was composed of nano-HA particles. During the hydrothermal process, TiO2 and Nb2O5 formed on the TiNb alloy surface and hydrated to Ti(OH)4 and Nb(OH)5, respectively. Calcium phosphate nucleated and grew into a layer of nano-HA particles on the surface of TiNb alloy under the hydrothermal conditions. The crystallinity of the nano-HA coating was improved with the increase in hydrothermal treatment temperature and time duration. Nano-HA coating with good crystallinity was produced on the TiNb alloy via the hydrothermal process at a temperature of 200 ºC for 12 h.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVES: The aim of this study was to investigate the influence of process parameters during dry coating on particle and dosage form properties upon varying the surface adsorbed moisture of microcrystalline cellulose (MCC), a model filler/binder for orally disintegrating tablets (ODTs). METHODS: The moisture content of MCC was optimised using the spray water method and analysed using thermogravimetric analysis. Microproperty/macroproperty assessment was investigated using atomic force microscopy, nano-indentation, scanning electron microscopy, tablet hardness and disintegration testing. KEY FINDINGS: The results showed that MCC demonstrated its best flowability at a moisture content of 11.2% w/w when compared to control, comprising of 3.9% w/w moisture. The use of the composite powder coating process (without air) resulted in up to 80% increase in tablet hardness, when compared to the control. The study also demonstrated that surface adsorbed moisture can be displaced upon addition of excipients during dry processing circumventing the need for particle drying before tabletting. CONCLUSIONS: It was concluded that MCC with a moisture content of 11% w/w provides a good balance between powder flowability and favourable ODT characteristics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The possibility of a surface inner sphere electron transfer mechanism leading to the coating of gold via the surface reduction of gold(I) chloride on metal and semi-metal oxide nanoparticles was investigated. Silica and zinc oxide nanoparticles are known to have very different surface chemistry, potentially leading to a new class of gold coated nanoparticles. Monodisperse silica nanoparticles were synthesised by the well known Stöber protocol in conjunction with sonication. The nanoparticle size was regulated solely by varying the amount of ammonia solution added. The presence of surface hydroxyl groups was investigated by liquid proton NMR. The resultant nanoparticle size was directly measured by the use of TEM. The synthesised silica nanoparticles were dispersed in acetonitrile (MeCN) and added to a bis acetonitrile gold(I) co-ordination complex [Au(MeCN)2]+ in MeCN. The silica hydroxyl groups were deprotonated in the presence of MeCN generating a formal negative charge on the siloxy groups. This allowed the [Au(MeCN)2]+ complex to undergo ligand exchange with the silica nanoparticles, which formed a surface co-ordination complex with reduction to gold(0), that proceeded by a surface inner sphere electron transfer mechanism. The residual [Au(MeCN)2]+ complex was allowed to react with water, disproportionating into gold(0) and gold(III) respectively, with gold(0) being added to the reduced gold already bound on the silica surface. The so-formed metallic gold seed surface was found to be suitable for the conventional reduction of gold(III) to gold(0) by ascorbic acid. This process generated a thin and uniform gold coating on the silica nanoparticles. This process was modified to include uniformly gold coated composite zinc oxide nanoparticles (Au@ZnO NPs) using surface co-ordination chemistry. AuCl dissolved in acetonitrile (MeCN) supplied chloride ions which were adsorbed onto ZnO NPs. The co-ordinated gold(I) was reduced on the ZnO surface to gold(0) by the inner sphere electron transfer mechanism. Addition of water disproportionated the remaining gold(I) to gold(0) and gold(III). Gold(0) bonded to gold(0) on the NP surface with gold(III) was reduced to gold(0) by ascorbic acid (ASC), which completed the gold coating process. This gold coating process of Au@ZnO NPs was modified to incorporate iodide instead of chloride. ZnO NPs were synthesised by the use of sodium oxide, zinc iodide and potassium iodide in refluxing basic ethanol with iodide controlling the presence of chemisorbed oxygen. These ZnO NPs were treated by the addition of gold(I) chloride dissolved in acetonitrile leaving chloride anions co-ordinated on the ZnO NP surface. This allowed acetonitrile ligands in the added [Au(MeCN)2]+ complex to surface exchange with adsorbed chloride from the dissolved AuCl on the ZnO NP surface. Gold(I) was then reduced by the surface inner sphere electron transfer mechanism. The presence of the reduced gold on the ZnO NPs allowed adsorption of iodide to generate a uniform deposition of gold onto the ZnO NP surface without the use of additional reducing agents or heat.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We employ a new solution-based coating process, centrifuge coating, to fabricate nanostructured conductive layers over large areas. This coating procedure allows fast quenching of the metastable dispersed state of nanomaterials, which minimizes material wastes by mitigate the effects of particle re-aggregation. Using this method, we fabricate SWNT coatings on different substrates such as PET (polyethylene terephthalate), PDMS (polydimethylsiloxane), and an acrylic elastomer. The effects of the choice of solvents on the morphology and subsequent performance of the coating network are studied. © 2012 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The surface morphology evolution of thin poly(styrene-block-ethylene/butylenes-block-styrene) (SEBS) triblock copolymer films as a function of the copolymer concentration was investigated by means of dynamic mode atomic force microscopy. At a relatively low copolymer concentration (0.025% w/v), the periodically orientated stripes were observed. This kind of surface patterning produced in the spin-coating process has not been reported in the literature before. It has been shown by our experiment that a shearing and stretching field can cause flexible polymer coils or aggregates to orientate during the spin coatings At a copolymer concentration of 0.05% w/v, SEBS molecule aggregates form network structures in the whole film. With further increase of the copolymer concentration, a continuous film with a microphase-separated structure was visualized.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The fluid flow of the liquid phase in the sol-gel-dip-coating process for SnO(2) thin film deposition is numerically simulated. This calculation yields useful information on the velocity distribution close to the substrate, where the film is deposited. The fluid modeling is done by assuming Newtonian behavior, since the linear relation between shear stress and velocity gradient is observed. Besides, very low viscosities are used. The fluid governing equations are the Navier-Stokes in the two dimensional form, discretized by the finite difference technique. Results of optical transmittance and X-ray diffraction on films obtained from colloidal suspensions with regular viscosity, confirm the substrate base as the thickest part of the film, as inferred from the numerical simulation. In addition, as the viscosity increases, the fluid acquires more uniform velocity distribution close to the substrate, leading to more homogenous and uniform films.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An organic-inorganic hybrid coating was developed to improve the corrosion resistance of the aluminum alloy AA 2024-T3. Organic and inorganic coatings derived from glycidoxypropyltrimethoxysilane (GPTMS) and aluminum tri-sec-butoxide Al((OBu)-Bu-s)(3), with different cerium contents, were deposited onto aluminum by dip-coating process. Corrosion resistance and mechanical properties were investigated by electrochemical impedance measurements and nano-indentation respectively. An optimal cerium concentration of 0.01 M was evidenced. To correlate and explain the hybrid coating performances in relation to the cerium content, NMR experiments were performed. It has been shown that when the cerium concentration in the hybrid is higher than 0.01 M there are important modifications in the hybrid structure that account for the mechanical properties and anti-corrosion behavior of the sol-gel coating. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In order to improve the chemical resistance of zirconium fluoride glass a protective transparent SnO2 layer was deposited by the solgel dip-coating process in the presence of Tiron (R) as particle surface modifier agent. After water immersion for different periods of time, both coated and non-coated fluoride glasses were analyzed by scanning electron microscopy, mass loss evaluation, infrared spectroscopy and X-ray photoelectron spectroscopy. In contrast to the effects occurring for non-coated glass, where the surface undergoes a rapid selective dissolution of the most soluble species, the results for the SnO2-coated glass showed that the filling of the film nanopores by dissolved glass material results in a hermetic barrier protecting the glass surface. The selective glass dissolution was confirmed by liquid chromatography measurements of the etching solution after each exposure time. (c) 2006 Elsevier B.V. All rights reserved.