937 resultados para classical fields on non-euclidean manifolds
Resumo:
The Dirac field is studied in a Lyra space-time background by means of the classical Schwinger Variational Principle. We obtain the equations of motion, establish the conservation laws, and get a scale relation relating the energy-momentum and spin tensors. Such scale relation is an intrinsic property for matter fields in Lyra background.
Resumo:
We explore a generalisation of the L´evy fractional Brownian field on the Euclidean space based on replacing the Euclidean norm with another norm. A characterisation result for admissible norms yields a complete description of all self-similar Gaussian random fields with stationary increments. Several integral representations of the introduced random fields are derived. In a similar vein, several non-Euclidean variants of the fractional Poisson field are introduced and it is shown that they share the covariance structure with the fractional Brownian field and converge to it. The shape parameters of the Poisson and Brownian variants are related by convex geometry transforms, namely the radial pth mean body and the polar projection transforms.
Resumo:
We prove end point estimate for Radon transform of radial functions on affine Grasamannian and real hyperbolic space. We also discuss analogs of these results on the sphere.
Resumo:
A classical theorem of H. Hopf asserts that a closed connected smooth manifold admits a nowhere vanishing vector field if and only if its Euler characteristic is zero. R. Brown generalized Hopf`s result to topological manifolds, replacing vector fields with path fields. In this note, we give an equivariant analog of Brown`s theorem for locally smooth G-manifolds where G is a finite group.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A robust visual tracking system requires an object appearance model that is able to handle occlusion, pose, and illumination variations in the video stream. This can be difficult to accomplish when the model is trained using only a single image. In this paper, we first propose a tracking approach based on affine subspaces (constructed from several images) which are able to accommodate the abovementioned variations. We use affine subspaces not only to represent the object, but also the candidate areas that the object may occupy. We furthermore propose a novel approach to measure affine subspace-to-subspace distance via the use of non-Euclidean geometry of Grassmann manifolds. The tracking problem is then considered as an inference task in a Markov Chain Monte Carlo framework via particle filtering. Quantitative evaluation on challenging video sequences indicates that the proposed approach obtains considerably better performance than several recent state-of-the-art methods such as Tracking-Learning-Detection and MILtrack.
Resumo:
Using the functional approach, we state and prove a characterization theorem for classical orthogonal polynomials on non-uniform lattices (quadratic lattices of a discrete or a q-discrete variable) including the Askey-Wilson polynomials. This theorem proves the equivalence between seven characterization properties, namely the Pearson equation for the linear functional, the second-order divided-difference equation, the orthogonality of the derivatives, the Rodrigues formula, two types of structure relations,and the Riccati equation for the formal Stieltjes function.
Resumo:
The effects of a non-uniform wind field along the path of a scintillometer are investigated. Theoretical spectra are calculated for a range of scenarios where the crosswind varies in space or time and compared to the ‘ideal’ spectrum based on a constant uniform crosswind. It is verified that the refractive-index structure parameter relation with the scintillometer signal remains valid and invariant for both spatially and temporally-varying crosswinds. However, the spectral shape may change significantly preventing accurate estimation of the crosswind speed from the peak of the frequency spectrum and retrieval of the structure parameter from the plateau of the power spectrum. On comparison with experimental data, non-uniform crosswind conditions could be responsible for previously unexplained features sometimes seen in observed spectra. By accounting for the distribution of crosswind, theoretical spectra can be generated that closely replicate the observations, leading to a better understanding of the measurements. Spatial variability of wind speeds should be expected for paths other than those that are parallel to the surface and over flat, homogenous areas, whilst fluctuations in time are important for all sites.
Resumo:
This paper is concerned with closed orbits of non-smooth vector fields on the plane. For a class of non-smooth vector fields we provide necessary and sufficient conditions for the existence of closed poly-trajectorie. By means of a regularization process we prove that hyperbolic closed poly-trajectories are limit sets of a sequence of limit cycles of smooth vector fields. In our approach the Poincaré Index for non-smooth vector fields is introduced. © 2013 Springer Science+Business Media New York.
Resumo:
Let M2n+1 be a C(CPn) -singular manifold. We study functions and vector fields with isolated singularities on M2n+1. A C(CPn) -singular manifold is obtained from a smooth manifold M2n+1 with boundary in the form of a disjoint union of complex projective spaces CPn boolean OR CPn boolean OR ... boolean OR CPn with subsequent capture of a cone over each component of the boundary. Let M2n+1 be a compact C(CPn) -singular manifold with k singular points. The Euler characteristic of M2n+1 is equal to chi(M2n+1) = k(1 - n)/2. Let M2n+1 be a C(CPn)-singular manifold with singular points m(1), ..., m(k). Suppose that, on M2n+1, there exists an almost smooth vector field V (x) with finite number of zeros m(1), ..., m(k), x(1), ..., x(1). Then chi(M2n+1) = Sigma(l)(i=1) ind(x(i)) + Sigma(k)(i=1) ind(m(i)).
Resumo:
This work deals with some classes of linear second order partial differential operators with non-negative characteristic form and underlying non- Euclidean structures. These structures are determined by families of locally Lipschitz-continuous vector fields in RN, generating metric spaces of Carnot- Carath´eodory type. The Carnot-Carath´eodory metric related to a family {Xj}j=1,...,m is the control distance obtained by minimizing the time needed to go from two points along piecewise trajectories of vector fields. We are mainly interested in the causes in which a Sobolev-type inequality holds with respect to the X-gradient, and/or the X-control distance is Doubling with respect to the Lebesgue measure in RN. This study is divided into three parts (each corresponding to a chapter), and the subject of each one is a class of operators that includes the class of the subsequent one. In the first chapter, after recalling “X-ellipticity” and related concepts introduced by Kogoj and Lanconelli in [KL00], we show a Maximum Principle for linear second order differential operators for which we only assume a Sobolev-type inequality together with a lower terms summability. Adding some crucial hypotheses on measure and on vector fields (Doubling property and Poincar´e inequality), we will be able to obtain some Liouville-type results. This chapter is based on the paper [GL03] by Guti´errez and Lanconelli. In the second chapter we treat some ultraparabolic equations on Lie groups. In this case RN is the support of a Lie group, and moreover we require that vector fields satisfy left invariance. After recalling some results of Cinti [Cin07] about this class of operators and associated potential theory, we prove a scalar convexity for mean-value operators of L-subharmonic functions, where L is our differential operator. In the third chapter we prove a necessary and sufficient condition of regularity, for boundary points, for Dirichlet problem on an open subset of RN related to sub-Laplacian. On a Carnot group we give the essential background for this type of operator, and introduce the notion of “quasi-boundedness”. Then we show the strict relationship between this notion, the fundamental solution of the given operator, and the regularity of the boundary points.
Resumo:
OBJECTIVE To investigate the regulatory effect of tumour necrosis factor (TNF) blockade with infliximab on the distribution of peripheral blood monocyte subpopulations in patients with rheumatoid arthritis (RA) and ankylosing spondylitis (AS). METHODS Purified CD11b+CD14+ monocytes from 5 patients with RA and 5 AS were analysed ex vivo before and after infliximab treatment by flow cytometry for CD16, CD163, CD11b, C-C chemokine receptor type 2 (CCR2) and CXC chemokine receptor 4 (CXCR4) at baseline and at days 2, 14, 84 and 168 after the first infliximab administration. Serum levels of the stromal cell-derived factor (SDF)-1 and monocyte chemotactic peptide (MCP)-1 at different time points were measured in either patient group before and on infliximab treatment. RESULTS Anti-TNF treatment with infliximab led to a significant increase of circulating CD11b+ non-classical and a concomitantly decrease of CD11b+ classical monocytes, to a decline in SDF-1 levels and reduced expression of CCR2 and CXCR4 on non-classical monocyte subpopulation. CONCLUSIONS Our study shows, that TNFα blockade by infliximab resulted in a dichotomy of the regulation of classical and non-classical monocytes that might have substantial impact on inhibition of osteoclastogenesis and of subsequent juxta-articular bone destruction and systemic bone loss in RA and AS.
Resumo:
Assume n,k,m,q are positive integers. Let M^n denote a smooth differentiable n-manifold and R^k Euclidean k-space. (a) If M^n is open it imbeds smoothly in R^k, k=2n-1 (b) If M^n is open and parallelizable it immerses in R^n (c) Assume M^n is closed and (m-1)-connected, 1< 2m-n < n+1. If a neighborhood of the (n-m)-skeleton immerses in R^q, a>2n-2m, then the complement of a point of M^n imbeds smoothly in R^q.
Resumo:
In structural brain MRI, group differences or changes in brain structures can be detected using Tensor-Based Morphometry (TBM). This method consists of two steps: (1) a non-linear registration step, that aligns all of the images to a common template, and (2) a subsequent statistical analysis. The numerous registration methods that have recently been developed differ in their detection sensitivity when used for TBM, and detection power is paramount in epidemological studies or drug trials. We therefore developed a new fluid registration method that computes the mappings and performs statistics on them in a consistent way, providing a bridge between TBM registration and statistics. We used the Log-Euclidean framework to define a new regularizer that is a fluid extension of the Riemannian elasticity, which assures diffeomorphic transformations. This regularizer constrains the symmetrized Jacobian matrix, also called the deformation tensor. We applied our method to an MRI dataset from 40 fraternal and identical twins, to revealed voxelwise measures of average volumetric differences in brain structure for subjects with different degrees of genetic resemblance.