A generalisation of the fractional Brownian field based on non-Euclidean norms


Autoria(s): Molchanov, Ilya; Ralchenko, Kostiantyn
Data(s)

2015

Resumo

We explore a generalisation of the L´evy fractional Brownian field on the Euclidean space based on replacing the Euclidean norm with another norm. A characterisation result for admissible norms yields a complete description of all self-similar Gaussian random fields with stationary increments. Several integral representations of the introduced random fields are derived. In a similar vein, several non-Euclidean variants of the fractional Poisson field are introduced and it is shown that they share the covariance structure with the fractional Brownian field and converge to it. The shape parameters of the Poisson and Brownian variants are related by convex geometry transforms, namely the radial pth mean body and the polar projection transforms.

Formato

application/pdf

application/pdf

Identificador

http://boris.unibe.ch/72281/1/1410.2523v2.pdf

http://boris.unibe.ch/72281/8/1-s2.0-S0022247X15004254-main.pdf

Molchanov, Ilya; Ralchenko, Kostiantyn (2015). A generalisation of the fractional Brownian field based on non-Euclidean norms. Journal of mathematical analysis and applications, 430(1), pp. 262-278. Elsevier 10.1016/j.jmaa.2015.04.085 <http://dx.doi.org/10.1016/j.jmaa.2015.04.085>

doi:10.7892/boris.72281

info:doi:10.1016/j.jmaa.2015.04.085

urn:issn:0022-247X

Idioma(s)

eng

Publicador

Elsevier

Relação

http://boris.unibe.ch/72281/

Direitos

info:eu-repo/semantics/openAccess

info:eu-repo/semantics/restrictedAccess

Fonte

Molchanov, Ilya; Ralchenko, Kostiantyn (2015). A generalisation of the fractional Brownian field based on non-Euclidean norms. Journal of mathematical analysis and applications, 430(1), pp. 262-278. Elsevier 10.1016/j.jmaa.2015.04.085 <http://dx.doi.org/10.1016/j.jmaa.2015.04.085>

Palavras-Chave #360 Social problems & social services #510 Mathematics
Tipo

info:eu-repo/semantics/article

info:eu-repo/semantics/publishedVersion

PeerReviewed