Functions and vector fields on C(CPn)-singular manifolds
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
18/03/2015
18/03/2015
01/08/2014
|
Resumo |
Let M2n+1 be a C(CPn) -singular manifold. We study functions and vector fields with isolated singularities on M2n+1. A C(CPn) -singular manifold is obtained from a smooth manifold M2n+1 with boundary in the form of a disjoint union of complex projective spaces CPn boolean OR CPn boolean OR ... boolean OR CPn with subsequent capture of a cone over each component of the boundary. Let M2n+1 be a compact C(CPn) -singular manifold with k singular points. The Euler characteristic of M2n+1 is equal to chi(M2n+1) = k(1 - n)/2. Let M2n+1 be a C(CPn)-singular manifold with singular points m(1), ..., m(k). Suppose that, on M2n+1, there exists an almost smooth vector field V (x) with finite number of zeros m(1), ..., m(k), x(1), ..., x(1). Then chi(M2n+1) = Sigma(l)(i=1) ind(x(i)) + Sigma(k)(i=1) ind(m(i)). |
Formato |
347-351 |
Identificador |
http://dx.doi.org/10.1007/s11253-014-0935-6 Ukrainian Mathematical Journal. New York: Springer, v. 66, n. 3, p. 347-351, 2014. 0041-5995 http://hdl.handle.net/11449/116350 10.1007/s11253-014-0935-6 WOS:000345186200003 |
Idioma(s) |
eng |
Publicador |
Springer |
Relação |
Ukrainian Mathematical Journal |
Direitos |
closedAccess |
Tipo |
info:eu-repo/semantics/article |