953 resultados para cerium dioxide thin film


Relevância:

100.00% 100.00%

Publicador:

Resumo:

CeO2 thin film was fabricated by dual ion beam epitaxial technique. The violet/blue PL at room temperature and lower temperature was observed from the CeO2 thin film. After the analysis of crystal structure and valence in the compound was carried out by the XRD and XPS technique, it was inferred that the origin of CeO2 PL was due to the electrons transition from Ce4f band to O2p band and the defect level to O2p band. And these defects levels were located in the range of 1 eV around Ce4f band.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CeO2 thin film was fabricated by dual ion beam epitaxial technique. The phenomenon of PL violet shift at room temperature was observed, and the distance of shift was about 65 nm. After the analysis of crystal structure and valence in the compound were carried out by XRD and XPS technique, it was concluded that the PL shift was related with valence of cerium ion in the oxides. When the valence of cerium ion varied front tetravalence to trivalence, the PL peak position would move from blue region to violet region and the phenomenon of "violet shift" was observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Degradation of reactive dye Remazol Brilliant Orange 3R (RBO) has been performed using photoeletrocatalysis. A biased potential is applied across a titanium dioxide thin-film photoelectrode illuminated by UV light. It is suggested that charges photogenerated at the electrode surface give rise to chlorine generation and powerful oxidants (OH) that causes the dye solution to decolorize. Rate constants calculated from color decay versus time reveal a first-order reaction up to 5.0×10-5 mol l-1 in dye concentration. The best experimental conditions were found to be pH 6.0 and 1.0 mol l-1 NaCl when the photoelectrode was biased at +1V (versus SCE). Almost complete mineralization of the dye content (70% TOC reduction) was achieved in a 3-h period using these conditions. Effects of other electrolytes, dye concentration and applied potentials also have been investigated and are discussed. © 2003 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, the photoelectrocatalytic behavior of bromide and generation of bromine using TiO2 was investigated in the separate anode and cathode reaction chambers. Our results show that the generation of bromine begins around a flatband potential of -0.34 V vs. standard calomel electrode (SCE) at pH 3.0 under UV illumination and increases with an increase in positive potential, finally reaching a steady-state concentration at 1.0 V vs. SCE. Maximum bromine formation occurs over the range of pH 4-6, decreasing sharply at conditions where the pH > 7. © 2003 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The production of chlorine and hypochlorite is of great economical and technological interest due to their large-scale use in many kinds of commercial applications. Yet, the current processes are not without problems such as inevitable side reactions and the high cost of production. This work reports the photoelectrocatalytic oxidation of chloride ions to free chlorine as it has been investigated by using titanium dioxide (TiO2) and several metal-doped titanium dioxide (M-TiO2) material electrodes. An average concentration of 800 mg L-1 of free chlorine was obtained in an open-air reactor using a TiO2 thin-film electrode biased at +1.0 V (SCE) and illuminated by UV light. The M-doped electrodes have performed poorly compared with the pure TiO2 counterpart. Test solutions containing 0.05 mol L-1 NaCl pH 2.0-4.0 were found to be the best conditions for fast production of free chlorine. A complete investigation of all parameters that influence the global process of chlorine production by the photoelectrocatalytic method such as applied potential, concentration of NaCl, pH solution, and time is presented in detail. In addition, photocurrent vs potential curves and the reaction order are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vanadium dioxide thin films were fabricated by ion beam sputtering on Si3N4/SiO2/Si after a post reductive annealing process in a nitrogen atmosphere. X-ray Diffraction (XRD), scanning electron microscope (SEM), and X-ray photoelectron spectroscopy (XPS) were employed to analyze the effects of post annealing temperature on crystallinity, morphology, and composition of the vanadium oxide thin films. Transmission properties of vanadium dioxide thin films were measured by Fourier transform-infrared (FT-IR) spectroscopy. The results showed that the as-deposited vanadium oxide thin films were composed of non-crystalline V2O5 and a tetragonal rutile VO2. After annealing at 400 degrees C for 2 h, the mixed phase vanadium oxide (VOx) thin film changed its composition and structure to VO2 and had a (011) oriented monoclinic rutile structure. When increasing the temperature to 450 degrees C, nano VO2 thin films with smaller grains were obtained. FT-IR results showed that the transmission contrast factor of the nano VO2 thin film was more than 0.99 and the transmission of smaller grain nano VO2 thin film was near zero at its switched state. Nano VO2 thin film with smaller grains is an ideal material for application in optical switching devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nano-vanadium dioxide thin films were prepared through thermal annealing vanadium oxide thin films deposited by dual ion beam sputtering. The nano-vanadium dioxide thin films changed its state from semiconductor phase to metal phase through heating by homemade system. Four point probe method and Fourier transform infrared spectrum technology were employed to measure and anaylze the electrical and optical semiconductor-to-metal phase transition properties of nano-vanadium dioxide thin films, respectively. The results show that there is an obvious discrepancy between the semiconductor-to-metal phase transition properties of electrical and optical phase transition. The nano-vanadium dioxide thin films' phase transiton temperature defined by electrical phase transiton property is 63 degrees C, higher than that defined by optical phase transiton property at 5 mu m, 60 degrees C; and the temperature width of electrical phase transition duration is also wider than that of optical phase transiton duration. The semiconductor-to-metal phase transiton temperature defined by optical properties increases with increasing wavelength in the region of infrared wave band, and the occuring temperature of phase transiton from semiconductor to metal also increases with wavelength increasing, but the duration temperature width of transition decreases with wavelength increasing. The phase transition properties of nano-vanadium dioxide thin film has obvious relationship with wavelength in infrared wave band. The phase transition properties can be tuned through wavelength in infrared wave band, and the semiconductor-to-metal phase transition properties of nano vanadiium dioxide thin films can be better characterized by electrical property.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By using the mass-analyzed low energy dual ion beam deposition technique, a high quality epitaxial, insulating cerium dioxide thin film with a thickness of about 2000 Angstrom, has been grown on a silicon (111) substrate. The component species, cerium and oxygen, are homogeneous in depth, and have the correct stoichiometry for CeO2. X-ray double-crystal diffraction shows that the full width at half maximum of the (222) and (111) peaks of the film are less than 23 and 32 s, respectively, confirming that the film is a perfect single crystal. (C) 1995 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The photoelectrochemical degradation of p-nitrophenol (PNP) was investigated using titanium dioxide thin-film photoelectrode. The effects of different supporting electrolytes, pH, applied potential and PNP concentration were examined and discussed. Complete photodegradation was obtained in perchlorate medium at pH 2 when the photoanode was biased at +1.0 V (versus SCE) during a 3-h experiment. Under these conditions, carbon removal of approximately 60% was achieved. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The feasibility of the photobleaching of a textile azo dye, reactive orange 16 (C.I. 17757), in aqueous solution using titanium dioxide thin-film electrodes prepared by the sol-gel method was investigated. The best conditions for maximum photoelectrocatalytic degradation were found to be pH > 10 for Na2SO4 medium and pH < 6 for NaCl. In both situations, an applied potential of +1.0 V and low dye concentration are recommended, when 100% of color removal is obtained after 20 min of photoelectrocatalysis. The effects of side reaction pathway on the degradation rate of dye in sulfate and chloride medium were presented and the best performance are optimized to situations closed to that verified in the textile effluent. The influence of variables as applied potential, pH, supporting electrolyte and dye concentration on the kinetics of photoelectrochemical degradation also were investigated. Oxalic acid is identified by HPLC and UV-Vis spectrophotometric methods as the main degradation product generated after 180 min of photoelectrocatalysis of 4 x 10(-5) mol l(-1) dye in sodium sulphate pH 12 and NaCl pH 4.0 and a maximum reduction of 56 and 62% TOC was obtained, respectively. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first success in the preparation of rare earth hydroxycarbonate thin films has been achieved. Cerium hydroxycarbonate films were prepared by a hydrothermal deposition method, the sample of a single orthorhombic phase was deposited at a lower temperature while those of orthorhombic and hexagonal phases were obtained at higher temperatures. The crystals in the films could be ellipsoidal, prismatic, or rhombic, depending on the deposition conditions applied. The thin films could be candidates for developing novel optical materials and for advanced ceramics processing. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A superconducting fault current limiter (SFCL) for 6.6 kV and 400 A installed in a cubicle for a distribution network substation was conceptually designed. The SFCL consists of parallel- and series-connected superconducting YBCO elements and a limiting resistor. Before designing the SFCL, some tests were carried out. The width and length of each element used in the tests are 30 mm and 210 mm, respectively. The element consists of YBCO thin film of about 200 nm in thickness on cerium dioxide (CeO2) as a cap-layer on a sapphire substrate by metal-organic deposition with a protective metal coat. In the tests, characteristics of each element, such as over-current, withstand-voltage, and so on, were obtained. From these characteristics, series and parallel connections of the elements, called units, were considered. The characteristics of the units were obtained by tests. From the test results, a single phase prototype SFCL was manufactured and tested. Thus, an SFCL rated at 6.6 kV and 400 A can be designed. © 2009 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The method of preparation of a novel plastic thin-film sensor that incorporates the fluorescent dye 8-hydroxypryrene-1,3,6-trisulfonic acid is described; the shelf-life of the film is over 6 months. The results of a study on the equilibrium response of the sensor towards different levels of gaseous CO2 fit a model there is a 1 + 1 equilibrium reaction between the deprotonated form of the dye (present in the film as an ion pair) and the concentration of gaseous CO2 present. In contrast to the situation in aqueous solution, in the plastic film the pK(a) of the excited form of the dye appears close to that of the ground-state form, although this does not interfere with its use as 8 CO2 sensor. The 0 to 90% response and recovery times of the film when exposed to an alternating atmosphere of air and 5% CO2 are typically 4.3 and 7.1 s, respectively.