988 resultados para brain dopamine


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of dopamine and serotonin in spinal pain regulation is well established. However, little is known concerning the role of brain dopamine and serotonin in the perception of pain in humans. The aim of this study was to assess the potential role of brain dopamine and serotonin in determining experimental pain sensitivity in humans using positron emission tomography (PET) and psychophysical methods. A total of 39 healthy subjects participated in the study, and PET imaging was performed to assess brain dopamine D2/D3 and serotonin 5-HT1A receptor availability. In a separate session, sensitivity to pain and touch was assessed with traditional psychophysical methods, allowing the evaluation of potential associations between D2/D3 and 5-HT1A binding and psychophysical responses. The subjects’ responses were also analyzed according to Signal Detection Theory, which enables separate assessment of the subject’s discriminative capacity (sensory factor) and response criterion (non-sensory factor). The study found that the D2/D3 receptor binding in the right putamen was inversely correlated with pain threshold and response criterion. 5-HT1A binding in cingulate cortex, inferior temporal gyrus and medial prefrontal cortex was inversely correlated with discriminative capacity for touch. Additionally, the response criterion for pain and intensity rating of suprathreshold pain were inversely correlated with 5-HT1A binding in multiple brain areas. The results suggest that brain D2/D3 receptors and 5-HT1A receptors modulate sensitivity to pain and that the pain modulatory effects may, at least partly, be attributed to influences on the response criterion. 5-HT1A receptors are also involved in the regulation of touch by having an effect on discriminative capacity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: We have previously shown that the offspring of vitamin D3 depleted rats have enlarged ventricles and altered neurotrophin profiles (reduced NGF and GDNF). These findings enhance the biological plausibility that low prenatal vitamin D may be a risk factor for schizophrenia. Our recent behavioural studies have found that adult rats with developmental vitamin D deficiency (DVD) have a subtle increase in baseline locomotor activity and a heightened response to dopamine (DA) antagonists. The aim of this study was to investigate brain DA neurochemistry in the DVD model. Methods: We examined cerebrums and striatal tissue from neonates and a variety of brain tissues from the remaining littermates at adulthood. DA, DOPAC, HVA, serotonin and 5HIAA were analysed by HPLC. Single point comparisons for DA1, DA2 and NMDA receptors were also assessed in these tissues. Results: Significant increases in DA and HVA were found in brains from DVD deplete neonates (P=0.01). However, DA and its metabolites were not increased in either the neonate or adult striatum, however there was a trend towards increased DA and its metabolites in the accumbens (P=0.1). Receptor densities were unaffected by prenatal vitamin D levels. Conclusions: Although the effect of maternal diet appears to increase DA production and turnover in neonatal brain, this does not persist into adulthood. Thus other factors must underlie the increased locomotor activity noted in these animals. Future experiments will concentrate on monitoring accumbens and striatal DA release and turnover using microdialysis in pharmacologically challenged behavioural paradigms. References: Eyles D, Brown J; Mackay-Sim A, McGrath J, Feron F. (2003) Vitamin D3 and brain development. Neuroscience 118 (3) 641–653. Burne T, McGrath J, Eyles D, Mackay-Sim A. Behavioural characterization of vitamin D receptor knockout mice. (2005) Behavioural Brain Res: 157 299–308.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Attention Deficit Hyperactivity Disorder is a neurodevelopmental disorder correlated with a decrease in brain dopamine and an increase in behavioral symptoms of hyperactivity and impulsivity. This experiment explored how tartrazine (Yellow #5) impacts these symptoms. After tartrazine administration to Spontaneously Hypertensive Rats (SHR), dopamine concentrations in regions of brain tissue were measured using Enzyme-Linked Immunosorbent Assay analysis. Behavioral testing with a T-maze and open field test measured impulsivity and hyperactivity, respectively. Results indicate that dietary tartrazine increases hyperactive behaviors in the SHR. However, results do not indicate a relationship between dietary tartrazine and brain dopamine. No conclusions regarding the relationship between dietary tartrazine and impulsivity were drawn.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Brain dopamine transporters imaging by Single Emission Tomography (SPECT) with 123I-FP-CIT (DaTScanTM) has become an important tool in the diagnosis and evaluation of Parkinson syndromes.This diagnostic method allows the visualization of a portion of the striatum – where healthy pattern resemble two symmetric commas - allowing the evaluation of dopamine presynaptic system, in which dopamine transporters are responsible for dopamine release into the synaptic cleft, and their reabsorption into the nigrostriatal nerve terminals, in order to be stored or degraded. In daily practice for assessment of DaTScan TM, it is common to rely only on visual assessment for diagnosis. However, this process is complex and subjective as it depends on the observer’s experience and it is associated with high variability intra and inter observer. Studies have shown that semiquantification can improve the diagnosis of Parkinson syndromes. For semiquantification, analysis methods of image segmentation using regions of interest (ROI) are necessary. ROIs are drawn, in specific - striatum - and in nonspecific – background – uptake areas. Subsequently, specific binding ratios are calculated. Low adherence of semiquantification for diagnosis of Parkinson syndromes is related, not only with the associated time spent, but also with the need of an adapted database of reference values for the population concerned, as well as, the examination of each service protocol. Studies have concluded, that this process increases the reproducibility of semiquantification. The aim of this investigation was to create and validate a database of healthy controls for Dopamine transporters with DaTScanTM named DBRV. The created database has been adapted to the Nuclear Medicine Department’s protocol, and the population of Infanta Cristina’s Hospital located in Badajoz, Spain.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Brain dopamine transporters imaging by Single Photon Emission Tomography (SPECT) with 123I-FP-CIT has become an important tool in the diagnosis and evaluation of parkinsonian syndromes, since this radiopharmaceutical exhibits high affinity for membrane transporters responsible for cellular reabsorption of dopamine on the striatum. However, Ordered Subset Expectation Maximization (OSEM) is the method recommended in the literature for imaging reconstruction. Filtered Back Projection (FBP) is still used due to its fast processing, even if it presents some disadvantages. The aim of this work is to investigate the influence of reconstruction parameters for FBP in semiquantification of Brain Studies with 123I-FPCIT compared with those obtained with OSEM recommended reconstruction.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Positron emission tomography (PET) studies on healthy individuals have revealed a marked interindividual variability in striatal dopamine D2 receptor density that can be partly accounted for by genetic factors. The examination of the extrastriatal lowdensity D2 receptor populations has been impeded by the lack of suitable tracers. However, the quantification of these D2 receptor populations is now feasible with recently developed PET radioligands. The objective of this thesis was to study brain neurobiological correlates of common functional genetic variants residing in candidate genes relevant for D2 receptor functioning. For this purpose, healthy subjects were studied with PET imaging using [11C]raclopride and [11C]FLB457 as radioligands. The candidate genes examined in this work were the human D2 receptor gene (DRD2) and the catechol-Omethyltransferase gene (COMT). The region-specific genotypic influences were explored by comparing D2 receptor binding properties in the striatum, the cortex and the thalamus. As an additional study objective, the relationship between cortical D2 receptor density and a cognitive phenotype i.e. verbal memory and learning was assessed. The main finding of this study was that DRD2 C957T genotype altered markedly D2 receptor density in the cortex and the thalamus whereas in the striatum the C957T genotype affected D2 receptor affinity, but not density. Furthermore, the A1 allele of the DRD2-related TaqIA polymorphism showed increased cortical and thalamic D2 receptor density, but had the opposite effect on striatal D2 receptor density. The DRD2 –141C Ins/Del or the COMT Val158Met genotypes did not change D2 receptor binding properties. Finally, unlike previously reported, cortical D2 receptor density did not show any significant correlation with verbal memory function. The results of this study suggest that the C957T and the TaqIA genotypes have region-specific neurobiological correlates in brain dopamine D2 receptor availability in vivo. The biological mechanisms underlying these findings are unclear, but they may be related to the region-specific regulation of dopamine neurotranssion, gene/receptor expression and epigenesis. These findings contribute to the understanding of the genetic regulation of dopamine and D2 receptor-related brain functions in vivo in man. In addition, the results provide potentially useful endophenotypes for genetic research on psychiatric and neurological disorders.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The effects of feeding of 6-propyllhiouracil (6-I'fU) and potyunsaturatcd fatty acids (I'UFA) independently and ill combination and administration (ip) of a single close of Iriiodothyronine (I',) (2.51ig/IOOg body wl) along with feeding of 6- PTU and PUFA were studied in cal brain. Dopamine (DA), 5-hydroxytryplophan (5-IIl'I'), serolouin (5-Ill), 5-hydioxy indole acetic acid (5-111AA), norepinephrine (NF) :uul ceinephrinn (I?I'l) contenls were assayed in the hypothalannls and ccrc bral cortex regions. It was found that 6-P"l'U Iccding resulted in decrease in dopamine, 5-III', 5 II I I' and 5 IIiAA in both regions. In animals fed wills PUFA followed by adnliuislralion of T,. the I)A level was found normal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Depression is the most frequent psychiatric disorder in Parkinson`s disease (PD). Although evidence Suggests that depression in PD is related to the degenerative process that underlies the disease, further studies are necessary to better understand the neural basis of depression in this population of patients. In order to investigate neuronal alterations underlying the depression in PD, we studied thirty-six patients with idiopathic PD. Twenty of these patients had the diagnosis of major depression disorder and sixteen did not. The two groups were matched for PD motor severity according to Unified Parkinson Disease Rating Scale (UPDRS). First we conducted a functional magnetic resonance imaging (fMRI) using an event-related parametric emotional perception paradigm with test retest design. Our results showed decreased activation in the left mediodorsal (MD) thalamus and in medial prefrontall cortex in PD patients with depression compared to those without depression. Based upon these results and the increased neuron count in MD thalamus found in previous studies, we conducted a region of interest (ROI) guided voxel-based morphometry (VBM) study comparing the thalamic volume. Our results showed an increased volume in mediodorsal thalamic nuclei bilaterally. Converging morphological changes and functional emotional processing in mediodorsal thalamus highlight the importance of limbic thalamus in PD depression. In addition this data supports the link between neurodegenerative alterations and mood regulation. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Methylphenidate and 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy') are widely misused psychoactive drugs. Methylphenidate increases brain dopamine and norepinephrine levels by blocking the presynaptic reuptake transporters. MDMA releases serotonin, dopamine and norepinephrine through the same transporters. Pharmacodynamic interactions of methylphenidate and MDMA are likely. This study compared the pharmacodynamic and pharmacokinetic effects of methylphenidate and MDMA administered alone or in combination in healthy subjects using a double-blind, placebo-controlled, crossover design. Methylphenidate did not enhance the psychotropic effects of MDMA, although it produced psychostimulant effects on its own. The haemodynamic and adverse effects of co-administration of methylphenidate and MDMA were significantly higher compared with MDMA or methylphenidate alone. Methylphenidate did not change the pharmacokinetics of MDMA and vice versa. Methylphenidate and MDMA shared some subjective amphetamine-type effects; however, 125 mg of MDMA increased positive mood more than 60 mg of methylphenidate, and methylphenidate enhanced activity and concentration more than MDMA. Methylphenidate and MDMA differentially altered facial emotion recognition. Methylphenidate enhanced the recognition of sad and fearful faces, whereas MDMA reduced the recognition of negative emotions. Additionally, the present study found acute pharmacodynamic tolerance to MDMA but not methylphenidate. In conclusion, the combined use of methylphenidate and MDMA does not produce more psychoactive effects compared with either drug alone, but potentially enhances cardiovascular and adverse effects. The findings may be of clinical importance for assessing the risks of combined psychostimulant misuse. Trial registration identification number: NCT01465685 (http://clinicaltrials.gov/ct2/show/NCT01465685).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Position in the social hierarchy can influence brain dopamine function and cocaine reinforcement in nonhuman primates during early cocaine exposure. With prolonged exposure, however, initial differences in rates of cocaine self-administration between dominant and subordinate monkeys dissipate. The present studies used a choice procedure to assess the relative reinforcing strength of cocaine in group-housed male cynomolgus monkeys with extensive cocaine self-administration histories. Responding was maintained under a concurrent fixed-ratio 50 schedule of food and cocaine (0.003-0.1 mg/kg per injection) presentation. Responding on the cocaine-associated lever increased as a function of cocaine dose in all monkeys. Although response distribution was similar across social rank when saline or relatively low or high cocaine doses were the alternative to food, planned t tests indicated that cocaine choice was significantly greater in subordinate monkeys when choice was between an intermediate dose (0.01 mg/kg) and food. When a between-session progressive-ratio procedure was used to increase response requirements for the preferred reinforcer (either cocaine or food), choice of that reinforcer decreased in all monkeys. The average response requirement that produced a shift in response allocation from the cocaine-associated lever to the food-associated lever was higher in subordinates across cocaine doses, an effect that trended toward significance (p = 0.053). These data indicate that despite an extensive history of cocaine self-administration, most subordinate monkeys were more sensitive to the relative reinforcing strength of cocaine than dominant monkeys.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

When allowed to choose between different macronutrients, most animals display a strong attraction toward carbohydrates compared with proteins. It remains uncertain, however, whether this food selection pattern depends primarily on the sensory properties intrinsic to each nutrient or, alternatively, metabolic signals can act independently of the hedonic value of sweetness to stimulate elevated sugar intake. Here we show that Trpm5(-/-) mice, which lack the cellular mechanisms required for sweet and several forms of L-amino acid taste transduction, develop a robust preference for D-glucose compared with isocaloric L-serine independently of the perception of sweetness. Moreover, a close relationship was found between glucose oxidation and taste-independent nutrient intake levels, with animals increasing intake as a function of glucose oxidation rates. Furthermore, microdialysis measurements revealed nutrient-specific dopaminergic responses in accumbens and dorsal striatum during intragastric infusions of glucose or serine. Specifically, intragastric infusions of glucose induced significantly higher levels of dopamine release compared with isocaloric serine in both ventral and dorsal striatum. Intragastric stimulation of dopamine release seemed to depend on glucose utilization, because administration of an anti-metabolic glucose analog resulted in lower dopamine levels in striatum, an effect that was reversed by intravenous glucose infusions. Together, our findings suggest that carbohydrate-specific preferences can develop independently of taste quality or caloric load, an effect associated with the ability of a given nutrient to regulate glucose metabolism and stimulate brain dopamine centers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Apomorphine is a dopamine receptor agonist that was recently licensed for the treatment of erectile dysfunction. However, although sexual activity can be stressful, there has been little investigation into whether treatments for erectile dysfunction affect stress responses. We have examined whether a single dose of apomorphine, sufficient to produce penile erections (50 mug/kg, i.a.), can alter basal or stress-induced plasma ACTH levels, or activity of central pathways thought to control the hypothalamic-pituitary-adrenal axis in rats. An immune challenge (interleukin-1beta, 1 mug/kg, i.a.) was used as a physical stressor while sound stress (100 dB white noise, 30 min) was used as a psychological stressor. Intravascular administration of apomorphine had no effect on basal ACTH levels but did substantially increase the number of Fos-positive amygdala and nucleus tractus solitarius catecholamine cells. Administration of apomorphine prior to immune challenge augmented the normal ACTH response to this stressor at 90 min and there was a corresponding increase in the number of Fos-positive paraventricular nucleus corticotropin-releasing factor cells, paraventricular nucleus oxytocin cells and nucleus tractus solitarius catecholamine cells. However, apomorphine treatment did not alter ACTH or Fos responses to sound stress. These data suggest that erection-inducing levels of apomorphine interfere with hypothalamic-pituitary-adrenal axis inhibitory feedback mechanisms in response to a physical stressor, but have no effect on the response to a psychological stressor. Consequently, it is likely that apomorphine acts on a hypothalamic-pituitary-adrenal axis control pathway that is unique to physical stressors. A candidate for this site of action is the nucleus tractus solitarius catecholamine cell population and, in particular, A2 noradrenergic neurons. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Obesity is a major challenge to human health worldwide. Little is known about the brain mechanisms that are associated with overeating and obesity in humans. In this project, multimodal neuroimaging techniques were utilized to study brain neurotransmission and anatomy in obesity. Bariatric surgery was used as an experimental method for assessing whether the possible differences between obese and non-obese individuals change following the weight loss. This could indicate whether obesity-related altered neurotransmission and cerebral atrophy are recoverable or whether they represent stable individual characteristics. Morbidly obese subjects (BMI ≥ 35 kg/m2) and non-obese control subjects (mean BMI 23 kg/m2) were studied with positron emission tomography (PET) and magnetic resonance imaging (MRI). In the PET studies, focus was put on dopaminergic and opioidergic systems, both of which are crucial in the reward processing. Brain dopamine D2 receptor (D2R) availability was measured using [11C]raclopride and µ-opioid receptor (MOR) availability using [11C]carfentanil. In the MRI studies, voxel-based morphometry (VBM) of T1-weighted MRI images was used, coupled with diffusion tensor imaging (DTI). Obese subjects underwent bariatric surgery as their standard clinical treatment during the study. Preoperatively, morbidly obese subjects had significantly lower MOR availability but unaltered D2R availability in several brain regions involved in reward processing, including striatum, insula, and thalamus. Moreover, obesity disrupted the interaction between the MOR and D2R systems in ventral striatum. Bariatric surgery and concomitant weight loss normalized MOR availability in the obese, but did not influence D2R availability in any brain region. Morbidly obese subjects had also significantly lower grey and white matter densities globally in the brain, but more focal changes were located in the areas associated with inhibitory control, reward processing, and appetite. DTI revealed also signs of axonal damage in the obese in corticospinal tracts and occipito-frontal fascicles. Surgery-induced weight loss resulted in global recovery of white matter density as well as more focal recovery of grey matter density among obese subjects. Altogether these results show that the endogenous opioid system is fundamentally linked to obesity. Lowered MOR availability is likely a consequence of obesity and may mediate maintenance of excessive energy uptake. In addition, obesity has adverse effects on brain structure. Bariatric surgery however reverses MOR dysfunction and recovers cerebral atrophy. Understanding the opioidergic contribution to overeating and obesity is critical for developing new psychological or pharmacological treatments for obesity. The actual molecular mechanisms behind the positive change in structure and neurotransmitter function still remain unclear and should be addressed in the future research.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have isolated a cDNA clone from the honeybee brain encoding a dopamine receptor, AmDop2, which is positively coupled to adenylyl cyclase. The transmembrane domains of this receptor are 88% identical to the orthologous Drosophila D2 dopamine receptor, DmDop2, though phylogenetic analysis and sequence homology both indicate that invertebrate and vertebrate D2 receptors are quite distinct. In situ hybridization to mRNA in whole-mount preparations of honeybee brains reveals gene expression in the mushroom bodies, a primary site of associative learning. Furthermore, two anatomically distinct cell types in the mushroom bodies exhibit differential regulation of AmDop2 expression. In all nonreproductive females (worker caste) and reproductive males (drones) the receptor gene is strongly and constitutively expressed in all mushroom body interneurons with small cell bodies. In contrast, the large cell-bodied interneurons exhibit dramatic plasticity of AmDop2 gene expression. In newly emerged worker bees (cell-cleaning specialists) and newly emerged drones, no AmDop2 transcript is observed in the large interneurons whereas this transcript is abundant in these cells in the oldest worker bees (resource foragers) and older drones. Differentiation of the mushroom body interneurons into two distinct classes (i.e., plastic or nonplastic with respect to AmDop2 gene expression) indicates that this receptor contributes to the differential regulation of distinct neural circuits. Moreover, the plasticity of expression observed in the large cells implicates this receptor in the behavioral maturation of the bee.