967 resultados para bilayer gate dielectric


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metal oxide-semiconductor capacitors with TiO(x) deposited with different O(2) partial pressures (30%, 35%, and 40%) and annealed at 550, 750, and 1000 degrees C were fabricated and characterized. Fourier transform infrared, x-ray near edge spectroscopy, and elipsometry measurements were performed to characterize the TiO(x) films. TiO(x)N(y) films were also obtained by adding nitrogen to the gaseous mixture and physical results were presented. Capacitance-voltage (1 MHz) and current-voltage measurements were utilized to obtain the effective dielectric constant, effective oxide thickness, leakage current density, and interface quality. The results show that the obtained TiO(x) films present a dielectric constant varying from 40 to 170 and a leakage current density (for V(G)=-1 V, for some structures as low as 1 nA/cm(2), acceptable for complementary metal oxide semiconductor circuits fabrication), indicating that this material is a viable, in terms of leakage current density, highk substitute for current ultrathin dielectric layers. (C) 2009 American Vacuum Society. [DOI: 10.1116/1.3043537]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Present work deals with the Preparation and characterization of high-k aluminum oxide thin films by atomic layer deposition for gate dielectric applications.The ever-increasing demand for functionality and speed for semiconductor applications requires enhanced performance, which is achieved by the continuous miniaturization of CMOS dimensions. Because of this miniaturization, several parameters, such as the dielectric thickness, come within reach of their physical limit. As the required oxide thickness approaches the sub- l nm range, SiO 2 become unsuitable as a gate dielectric because its limited physical thickness results in excessive leakage current through the gate stack, affecting the long-term reliability of the device. This leakage issue is solved in the 45 mn technology node by the integration of high-k based gate dielectrics, as their higher k-value allows a physically thicker layer while targeting the same capacitance and Equivalent Oxide Thickness (EOT). Moreover, Intel announced that Atomic Layer Deposition (ALD) would be applied to grow these materials on the Si substrate. ALD is based on the sequential use of self-limiting surface reactions of a metallic and oxidizing precursor. This self-limiting feature allows control of material growth and properties at the atomic level, which makes ALD well-suited for the deposition of highly uniform and conformal layers in CMOS devices, even if these have challenging 3D topologies with high aspect-ratios. ALD has currently acquired the status of state-of-the-art and most preferred deposition technique, for producing nano layers of various materials of technological importance. This technique can be adapted to different situations where precision in thickness and perfection in structures are required, especially in the microelectronic scenario.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

GaN based high electron mobility transistors have draw great attention due to its potential in high temperature, high power and high frequency applications [1, 2]. However, significant gate leakage current is still one of the issues which need to be solved to improve the performance and reliability of the devices [3]. Several research groups have contributed to solve this problem by using metal–oxide–semiconductor HEMTs (MOSHEMTs), with a thin dielectric layer, such as SiO2 [4], Al2O3 [5], HfO2 [6] and Gd2O3 [7] between the gate and the barrier layer on AlGaN/GaN heterostructures. Gd2O3 has shown low interfacial density of states(Dit) with GaN and a high dielectric constant and low electrical leakage currents [8], thus is considered as a promising candidate for the gate dielectrics on GaN. MOS-HEMTs using Gd2O3 grown by electron-beam heating [7] or molecular beam epitaxy (MBE) [8] on GaN or AlGan/GaN structure have been investigated, but further research is still needed in Gd2O3 based AlGaN/GaN MOSHEMTs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal stability of AlGaN/GaN MOS-HEMTs and -diodes using Gd_(2)O_(3) are investigated by means of different thermal cycles and storage tests up to 500ºC for one week. IV DC and pulsed characteristics of the devices before and after the processes are evaluated and compared with conventional HEMTs. Results show that the devices with Gd_(2)O_(3) dielectric layer have lower leakage current and a more stable behavior during thermal treatment processes compared with conventional devices. In fact, an excellent on/off ratio of about 108 and a stable V_(t) is observed after storage at high temperature. The beneficial effects of Gd_(2)O_(3) on trapping effects of MOS-HEMTs are also dis-cussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The impact of the titanium nitride (TIN) gate electrode thickness has been investigated in n and p channel SOI multiple gate field effect transistors (MuGFETs) through low frequency noise charge pumping and static measurements as well as capacitance-voltage curves The results suggest that a thicker TIN metal gate electrode gives rise to a higher EOT a lower mobility and a higher interface trap density The devices have also been studied for different back gate biases where the GIFBE onset occurs at lower front-gate voltage for thinner TIN metal gate thickness and at higher V(GF) In addition it is demonstrated that post deposition nitridation of the MOCVD HfSiO gate dielectric exhibits an unexpected trend with TIN gate electrode thickness where a continuous variation of EOT and an increase on the degradation of the interface quality are observed (C) 2010 Elsevier Ltd All rights reserved

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work characterizes the analog performance of SOI n-MuGFETs with HfSiO gate dielectric and TiN metal gate with respect to the influence of the high-k post-nitridation. TiN thickness and device rotation. A thinner TiN metal gate is found favorable for improved analog characteristics showing an increase in intrinsic voltage gain. The devices where the high-k material is subjected to a nitridation step indicated a degradation of the Early voltage (V(EA)) values which resulted in a lower voltage gain. The 45 degrees rotated devices have a smaller V(EA) than the standard ones when a HfSiO dielectric is used. However, the higher transconductance of these devices, due to the increased mobility in the (1 0 0) sidewall orientation, compensates this V(EA) degradation of the voltage gain, keeping it nearly equal to the voltage gain values of the standard devices. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Scaling down of the CMOS technology requires thinner gate dielectric to maintain high performance. However, due to the depletion of poly-Si gate, it is difficult to reduce the gate thickness further especially for sub-65 nm CMOS generation. Fully silicidation metal gate (FUSI) is one of the most promising solutions. Furthermore, FUSI metal gate reduces gate-line sheet resistance, prevents boron penetration to channels, and has good process compatibility with high-k gate dielectric. Poly-SiGe gate technology is another solution because of its enhancement of boron activation and compatibility with the conventional CMOS process. Combination of these two technologies for the formation of fully germanosilicided metal gate makes the approach very attractive. In this paper, the deposition of undoped Poly-Si₁₋xGex (0 < x < 30% ) films onto SiO₂ in a low pressure chemical vapor deposition (LPCVD) system is described. Detailed growth conditions and the characterization of the grown films are presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work studies the gate-induced drain leakage (GIDL) in p- and n-MuGFET structures with different TiN metal gate thickness and high-k gate dielectrics. As a result of this analysis, it was observed that a thinner TiN metal gate showed a larger GIDL due to the different gate oxide thickness and a reduced metal gate work function. In addition, replacing SiON by a high-k dielectric (HfSiON) results for nMuGFETs in a decrease of the GIDL On the other hand, the impact of the gate dielectric on the GIDL for p-channel MuGFETs is marginal. The effect of the channel width was also studied, whereby narrow fin devices exhibit a reduced GIDL current in spite of the larger vertical electric field expected for these devices. Finally, comparing the effect of the channel type, an enhanced GIDL current for pMuGFET devices was observed. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis describes a collection of studies into the electrical response of a III-V MOS stack comprising metal/GaGdO/GaAs layers as a function of fabrication process variables and the findings of those studies. As a result of this work, areas of improvement in the gate process module of a III-V heterostructure MOSFET were identified. Compared to traditional bulk silicon MOSFET design, one featuring a III-V channel heterostructure with a high-dielectric-constant oxide as the gate insulator provides numerous benefits, for example: the insulator can be made thicker for the same capacitance, the operating voltage can be made lower for the same current output, and improved output characteristics can be achieved without reducing the channel length further. It is known that transistors composed of III-V materials are most susceptible to damage induced by radiation and plasma processing. These devices utilise sub-10 nm gate dielectric films, which are prone to contamination, degradation and damage. Therefore, throughout the course of this work, process damage and contamination issues, as well as various techniques to mitigate or prevent those have been investigated through comparative studies of III-V MOS capacitors and transistors comprising various forms of metal gates, various thicknesses of GaGdO dielectric, and a number of GaAs-based semiconductor layer structures. Transistors which were fabricated before this work commenced, showed problems with threshold voltage control. Specifically, MOSFETs designed for normally-off (VTH > 0) operation exhibited below-zero threshold voltages. With the results obtained during this work, it was possible to gain an understanding of why the transistor threshold voltage shifts as the gate length decreases and of what pulls the threshold voltage downwards preventing normally-off device operation. Two main culprits for the negative VTH shift were found. The first was radiation damage induced by the gate metal deposition process, which can be prevented by slowing down the deposition rate. The second was the layer of gold added on top of platinum in the gate metal stack which reduces the effective work function of the whole gate due to its electronegativity properties. Since the device was designed for a platinum-only gate, this could explain the below zero VTH. This could be prevented either by using a platinum-only gate, or by matching the layer structure design and the actual gate metal used for the future devices. Post-metallisation thermal anneal was shown to mitigate both these effects. However, if post-metallisation annealing is used, care should be taken to ensure it is performed before the ohmic contacts are formed as the thermal treatment was shown to degrade the source/drain contacts. In addition, the programme of studies this thesis describes, also found that if the gate contact is deposited before the source/drain contacts, it causes a shift in threshold voltage towards negative values as the gate length decreases, because the ohmic contact anneal process affects the properties of the underlying material differently depending on whether it is covered with the gate metal or not. In terms of surface contamination; this work found that it causes device-to-device parameter variation, and a plasma clean is therefore essential. This work also demonstrated that the parasitic capacitances in the system, namely the contact periphery dependent gate-ohmic capacitance, plays a significant role in the total gate capacitance. This is true to such an extent that reducing the distance between the gate and the source/drain ohmic contacts in the device would help with shifting the threshold voltages closely towards the designed values. The findings made available by the collection of experiments performed for this work have two major applications. Firstly, these findings provide useful data in the study of the possible phenomena taking place inside the metal/GaGdO/GaAs layers and interfaces as the result of chemical processes applied to it. In addition, these findings allow recommendations as to how to best approach fabrication of devices utilising these layers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Radiation dosimetry is crucial in many fields, where the exposure of ionizing radiation must be precisely controlled to avoid health and environmental safety issues. Radiotherapy and radioprotection are two examples in which fast and reliable detectors are needed. Compact and large area wearable detectors are being developed to address real-life radiation dosimetry applications, their ideal properties include flexibility, lightness, and low-cost. This thesis contributed to the development of Radiation sensitive OXide Field Effect Transistors (ROXFETs), which are detectors able to provide fast and real-time radiation read out. ROXFETs are based on thin film transistors fabricated with high-mobility amorphous oxide semiconductor, making them compatible with large area, flexible, and low cost production over plastic substrates. The gate dielectric material has high dielectric constant and high atomic number, which results in high performances and high radiation sensitivity, respectively. The aim of this work was to establish a stable and reliable fabrication process for ROXFETs made with atomic layer deposited gate dielectric. A study on the effect of gate dielectric materials was performed, focusing the attention on the properties of the dielectric-semiconductor interface. Single and multi layer dielectric structures were compared during this work. Furthermore, the effect of annealing temperature was studied. The device performances were tested to understand the underlying physical processes. In this way, it was possible to determine a reliable fabrication procedure and an optimal structure for ROXFETs. An outstanding sensitivity of (65±3)V/Gy was measured in detectors with a bi-layer Ta₂O₅-Al₂O₃ gate dielectric with low temperature annealing performed at 180°C.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Metal oxide semiconductor (MOS) capacitors with titanium oxide (TiO(x)) dielectric layer, deposited with different oxygen partial pressure (30,35 and 40%) and annealed at 550, 750 and 1000 degrees C, were fabricated and characterized. Capacitance-voltage and current-voltage measurements were utilized to obtain, the effective dielectric constant, effective oxide thickness, leakage current density and interface quality. The obtained TiO(x) films present a dielectric constant varying from 40 to 170 and a leakage current density, for a gate voltage of - 1 V, as low as 1 nA/cm(2) for some of the structures, acceptable for MOS fabrication, indicating that this material is a viable high dielectric constant substitute for current ultra thin dielectric layers. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we present an amorphous silicon device that can be used in two operation modes to measure the concentration of ions in solution. While crystalline devices present a higher sensitivity, their amorphous counterpart present a much lower fabrication cost, thus enabling the production of cheap disposable sensors for use, for example, in the food industry. The devices were fabricated on glass substrates by the PECVD technique in the top gate configuration, where the metallic gate is replaced by an electrolytic solution with an immersed Ag/AgCl reference electrode. Silicon nitride is used as gate dielectric enhancing the sensitivity and passivation layer used to avoid leakage and electrochemical reactions. In this article we report on the semiconductor unit, showing that the device can be operated in a light-assisted mode, where changes in the pH produce changes on the measured ac photocurrent. In alternative the device can be operated as a conventional ion selective field effect device where changes in the pH induce changes in the transistor's threshold voltage.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Applied Physics Letters, Vol.93, issue 20

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis is devoted to understanding and improving technologically important III-V compound semiconductor (e.g. GaAs, InAs, and InSb) surfaces and interfaces for devices. The surfaces and interfaces of crystalline III-V materials have a crucial role in the operation of field-effect-transistors (FET) and highefficiency solar-cells, for instance. However, the surfaces are also the most defective part of the semiconductor material and it is essential to decrease the amount of harmful surface or interface defects for the next-generation III-V semiconductor device applications. Any improvement in the crystal ordering at the semiconductor surface reduces the amount of defects and increases the material homogeneity. This is becoming more and more important when the semiconductor device structures decrease to atomic-scale dimensions. Toward that target, the effects of different adsorbates (i.e., Sn, In, and O) on the III-V surface structures and properties have been investigated in this work. Furthermore, novel thin-films have been synthesized, which show beneficial properties regarding the passivation of the reactive III-V surfaces. The work comprises ultra-high-vacuum (UHV) environment for the controlled fabrication of atomically ordered III-V(100) surfaces. The surface sensitive experimental methods [low energy electron diffraction (LEED), scanning tunneling microscopy/spectroscopy (STM/STS), and synchrotron radiation photoelectron spectroscopy (SRPES)] and computational density-functionaltheory (DFT) calculations are utilized for elucidating the atomic and electronic properties of the crucial III-V surfaces. The basic research results are also transferred to actual device tests by fabricating metal-oxide-semiconductor capacitors and utilizing the interface sensitive measurement techniques [capacitance voltage (CV) profiling, and photoluminescence (PL) spectroscopy] for the characterization. This part of the thesis includes the instrumentation of home-made UHV-compatible atomic-layer-deposition (ALD) reactor for growing good quality insulator layers. The results of this thesis elucidate the atomic structures of technologically promising Sn- and In-stabilized III-V compound semiconductor surfaces. It is shown that the Sn adsorbate induces an atomic structure with (1×2)/(1×4) surface symmetry which is characterized by Sn-group III dimers. Furthermore, the stability of peculiar ζa structure is demonstrated for the GaAs(100)-In surface. The beneficial effects of these surface structures regarding the crucial III-V oxide interface are demonstrated. Namely, it is found that it is possible to passivate the III-V surface by a careful atomic-scale engineering of the III-V surface prior to the gate-dielectric deposition. The thin (1×2)/(1×4)-Sn layer is found to catalyze the removal of harmful amorphous III-V oxides. Also, novel crystalline III-V-oxide structures are synthesized and it is shown that these structures improve the device characteristics. The finding of crystalline oxide structures is exploited by solving the atomic structure of InSb(100)(1×2) and elucidating the electronic structure of oxidized InSb(100) for the first time.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The introduction of high-permittivity gate dielectric materials into complementary metal oxide semiconductor technology has reopened the interest in Ge as a channel material mainly due to its high hole mobility. Since HfO(2) and ZrO(2) are two of the most promising dielectric candidates, it is important to investigate if Hf and Zr may diffuse into the Ge channel. Therefore, using ab initio density functional theory calculations, we have studied substitutional and interstitial Hf and Zr impurities in c-Ge, looking for neutral defects. We find that (i) substitutional Zr and Hf defects are energetically more favorable than interstitial defects; (ii) under oxygen-rich conditions, neither Zr nor Hf migration towards the channel is likely to occur; (iii) either under Hf- or Zr-rich conditions it is very likely, particularly for Zr, that defects will be incorporated in the channel.