995 resultados para barreira de Schottky
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Technological advances achieved during the twentieth century strongly boosted the scientific research in the area of condensed matter physics, especially in the study and development of new semiconductor materials. In the segment, the development of semiconducting polymers for application in electronic devices promotes the field of organic electronics...(Complete abstract click electronic access below)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Usually organic polymeric diodes are made with a semiconductor layer placed between two electrodes in a sandwich-like architecture, where the electrodes are deposited on the surfaces of a polymeric semiconductor film. This methodology leads to two main problems: i) the polymeric film top surface is rough and irregular, resulting in non-uniform electric field into the device; ii) during the deposition of metallic electrode in the top surface polymeric film, by thermal evaporation, occurs the diffusion of metal atoms into the polymeric film, changing the material electronic structure. Thus, the metal-semiconductor junction is not well defined, which is essential for the production of good quality Schottky diode, which exhibits ideality factor close to the unity and low turn-on voltage. In order to avoid these two problems, in the present research was proposed to manufacture an organic diode with the semiconductor polymeric layer deposited over bimetallic (gold and aluminum) interdigitated electrodes. The doping of the active layer was performed by immersing the device in hydrochloric acid solution with pH 2 during different times in order to promote different doping levels of the semiconductor polymer. Was verified that the proposed diode, which exhibits well-defined metal-semiconductor junction, operates as a Schottky diode, with good ideality factor, 10 ± 3, and low turn-on voltage, 1,2 ± 0,2 V, in comparison with conventional organic polymeric diodes. Contrasting with the ideality factor and turn-on voltage, the diode rectification ratio was obtained as 7, a value lower than the expected for a good organic diode. Was also showed that the diode characteristics were dependent on the semiconductor polymer doping level, and that the diode characteristics were optimized with doping promoted by immersion in the acid solution for times longer than 50 s. Furthermore, as was showed that the diodes properties are dependent on the semiconductor...
Resumo:
Relatório de estágio para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Edificações
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia de Materiais
Resumo:
Fundação para a Ciência e a Tecnologia (FCT)- PhD grant SFRH/BD/37151/2007; projects PTDC/MAT/099275/2008; PTDC/MAT/119689/2010; PTDC/MAT/120411/2010; PTDC/MAT-GEO/0675/2012
Resumo:
A eficiência da espécie Azadirachta indica como barreira natural ao ataque da Hypsipyla grandella sobre o mogno em diferentes arranjos e densidades de plantio foi, avaliada. O estudo foi realizado numa área de pastagem degradada em Vigia, PA. O delineamento experimental utilizado foi em blocos ao acaso em esquema de parcelas subdivididas no tempo, com cinco repetições, sendo as formas de cultivo do mogno as parcelas, e as épocas de avaliação (meses) as subparcelas. A barreira natural formada pelo nim não evitou o ataque de H. grandella sobre o mogno, mas retardou e minimizou o ataque em plantios mistos. Para o maior controle do ataque de H. grandella, o mogno não deve ser plantado simultaneamente com o nim, mas um ano após o plantio do nim, quando este apresenta mais de três metros de altura, formando uma barreira natural mais eficaz ao ataque desta praga.
Resumo:
Tese de Doutoramento Engenharia Têxtil
Resumo:
Um exemplar fêmea de Paracentronodus nevesi Barreira & Sakakibara, 2001, de São José dos Cordeiros, região de semi-árido (Caatinga), do Estado da Paraíba, é descrito e ilustrado. Até o presente, apenas o macho era conhecido.
Resumo:
We give a theoretical interpretation of the noise properties of Schottky barrier diodes based on the role played by the long range Coulomb interaction. We show that at low bias Schottky diodes display shot noise because the presence of the depletion layer makes the effects of the Coulomb interaction negligible on the current fluctuations. When the device passes from barrier to flat band conditions, the Coulomb interaction becomes active, thus introducing correlation between different current fluctuations. Therefore, the crossover between shot and thermal noise represents the suppression due to long range Coulomb interaction of the otherwise full shot noise. Similar ideas can be used to interpret the noise properties of other semiconductor devices.
Resumo:
The influence of premetallization surface preparation on the structural, chemical, and electrical properties of Au-nGaN interfaces has been investigated by x-ray photoemission spectroscopy (XPS), current-voltage measurement (I-V) and cross-section transmission electron microscopy (TEM). XPS analysis showed that the three GaN substrate treatments investigated i.e., ex situ hydrofluoric acid etch, in situ anneal in ultrahigh-vacuum (UHV), and in situ Ga reflux cleaning in UHV result in surfaces increasingly free of oxygen contamination. XPS and TEM characterization of Au-nGaN formed after the three premetallization surface treatments show that HF etching and UHV annealing produce abrupt, well-defined interfaces. Conversely, GaN substrate cleaning in a Ga flux results in Au/GaN intermixing. I-V characterization of Au¿nGaN contacts yields a Schottky barrier height of 1.25 eV with a very low-ideality factor and very good contact uniformity for the premetallization UHV anneal, while the Ga reflux cleaning results in a much lower barrier (0.85 eV), with poor ideality and uniformity. I-V and XPS results suggest a high density of acceptor states at the surface, which is further enhanced by UHV annealing. These results are discussed in the context of current models of Schottky barrier formation.