964 resultados para asymptotic expansion


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the asymptotic expansion of the hyperbolic specification of the colored Jones polynomial of torus knots, we identify different geometric contributions, in particular Chern-Simons invariant and Reidemeister torsion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A generalized asymptotic expansion in the far field for the problem of cylindrical wave reflection at a homogeneous impedance plane is derived. The expansion is shown to be uniformly valid over all angles of incidence and values of surface impedance, including the limiting cases of zero and infinite impedance. The technique used is a rigorous application of the modified steepest descent method of Ot

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Л. И. Каранджулов, Н. Д. Сиракова - В работата се прилага методът на Поанкаре за решаване на почти регулярни нелинейни гранични задачи при общи гранични условия. Предполага се, че диференциалната система съдържа сингулярна функция по отношение на малкия параметър. При определени условия се доказва асимптотичност на решението на поставената задача.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Transient response of a CSTR containing porous catalyst pellets is analyzed theoretically using a matched asymptotic expansion technique. This singular perturbation technique leads directly to the conditions under which the minima of reservoir concentration occur. The existence of the minima may be used to estimate some inherent parameters of the catalyst pellet.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We give an asymptotic expansion for the Taylor coe±cients of L(P(z)) where L(z) is analytic in the open unit disc whose Taylor coe±cients vary `smoothly' and P(z) is a probability generating function. We show how this result applies to a variety of problems, amongst them obtaining the asymptotics of Bernoulli transforms and weighted renewal sequences.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this article, we give an asymptotic formula of order n(-1/2), where n is the sample size, for the skewness of the distributions of the maximum likelihood estimates of the parameters in exponencial family nonlinear models. We generalize the result by Cordeiro and Cordeiro ( 2001). The formula is given in matrix notation and is very suitable for computer implementation and to obtain closed form expressions for a great variety of models. Some special cases and two applications are discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The family of distributions proposed by Birnbaum and Saunders (1969) can be used to model lifetime data and it is widely applicable to model failure times of fatiguing materials. We give a simple matrix formula of order n(-1/2), where n is the sample size, for the skewness of the distributions of the maximum likelihood estimates of the parameters in Birnbaum-Saunders nonlinear regression models, recently introduced by Lemonte and Cordeiro (2009). The formula is quite suitable for computer implementation, since it involves only simple operations on matrices and vectors, in order to obtain closed-form skewness in a wide range of nonlinear regression models. Empirical and real applications are analyzed and discussed. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We show how the zero-temperature result for the heat-kernel asymptotic expansion can be generalized to the finite-temperature one. We observe that this general result depends on the interesting ratio square-root tau/beta, where tau is the regularization parameter and beta = 1/T, so that the zero-temperature limit beta --> infinity corresponds to the cutoff limit tau --> 0. As an example, we discuss some aspects of the axial model at finite temperature.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this work, we consider a simple model problem for the electromagnetic exploration of small perfectly conducting objects buried within the lower halfspace of an unbounded two–layered background medium. In possible applications, such as, e.g., humanitarian demining, the two layers would correspond to air and soil. Moving a set of electric devices parallel to the surface of ground to generate a time–harmonic field, the induced field is measured within the same devices. The goal is to retrieve information about buried scatterers from these data. In mathematical terms, we are concerned with the analysis and numerical solution of the inverse scattering problem to reconstruct the number and the positions of a collection of finitely many small perfectly conducting scatterers buried within the lower halfspace of an unbounded two–layered background medium from near field measurements of time–harmonic electromagnetic waves. For this purpose, we first study the corresponding direct scattering problem in detail and derive an asymptotic expansion of the scattered field as the size of the scatterers tends to zero. Then, we use this expansion to justify a noniterative MUSIC–type reconstruction method for the solution of the inverse scattering problem. We propose a numerical implementation of this reconstruction method and provide a series of numerical experiments.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Theoretical models for the thermal response of vertical geothermal boreholes often assume that the characteristic time of variation of the heat injection rate is much larger than the characteristic diffusion time across the borehole. In this case, heat transfer inside the borehole and in its immediate surroundings is quasi-steady in the first approximation, while unsteady effects enter only in the far field. Previous studies have exploited this disparity of time scales, incorporating approximate matching conditions to couple the near-borehole region with the outer unsteady temperatura field. In the present work matched asymptotic expansion techniques are used to analyze the heat transfer problem, delivering a rigorous derivation of the true matching condition between the two regions and of the correct definition of the network of thermal resistances that represents the quasi-steady solution near the borehole. Additionally, an apparent temperature due to the unsteady far field is identified that needs to be taken into account by the near-borehole region for the correct computation of the heat injection rate. This temperature differs from the usual mean borehole temperature employed in the literatura.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multiple gas solid reactions involving one solid and N gaseous reactants are investigated in this study by using a matched asymptotic expansion technique. Two cases are particularly studied. In the first case all N chemical reaction rates are faster than the diffusion rate. While in the second case only M (M < N) chemical reaction rates are faster than the diffusion rate and the rates of the remaining (N-M) chemical reactions are comparable to that of diffusion. For these two cases the solid concentration profile behaves like a travelling wave. In the first case the wave front velocity is contributed linearly by all gaseous reactants (additive law) while in the second case this law does not hold.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

By using a matched asymptotic expansion technique, the shrinking core model (SCM) used in non-catalytic gas solid reactions with general kinetic expression is rigorously justified in this paper as a special case of the homogeneous model when the reaction rate is much faster than that of diffusion. The time-pendent velocity of the moving reacted-unreacted interface is found to be proportional to the gas flux at that interface for all geometries of solid particles, and the thickness order of the reaction zone and also the degree of chemical reaction at the interface is discussed in this paper.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The McMillan map is a one-parameter family of integrable symplectic maps of the plane, for which the origin is a hyperbolic fixed point with a homoclinic loop, with small Lyapunov exponent when the parameter is small. We consider a perturbation of the McMillan map for which we show that the loop breaks in two invariant curves which are exponentially close one to the other and which intersect transversely along two primary homoclinic orbits. We compute the asymptotic expansion of several quantities related to the splitting, namely the Lazutkin invariant and the area of the lobe between two consecutive primary homoclinic points. Complex matching techniques are in the core of this work. The coefficients involved in the expansion have a resurgent origin, as shown in [MSS08].