988 resultados para area-preserving maps


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phenomena as reconnection scenarios, periodic-orbit collisions, and primary shearless tori have been recognized as features of nontwist maps. Recently, these phenomena and secondary shearless tori were analytically predicted for generic maps in the neighborhood of the tripling bifurcation of an elliptic fixed point. In this paper, we apply a numerical procedure to find internal rotation number profiles that highlight the creation of periodic orbits within islands of stability by a saddle-center bifurcation that emerges out a secondary shearless torus. In addition to the analytical predictions, our numerical procedure applied to the twist and nontwist standard maps reveals that the atypical secondary shearless torus occurs not only near a tripling bifurcation of the fixed point but also near a quadrupling bifurcation. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4750040]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The magnetic field line structure in a tokamak can be obtained by direct numerical integration of the field line equations. However, this is a lengthy procedure and the analysis of the solution may be very time-consuming. Otherwise we can use simple two-dimensional, area-preserving maps, obtained either by approximations of the magnetic field line equations, or from dynamical considerations. These maps can be quickly iterated, furnishing solutions that mirror the ones obtained from direct numerical integration, and which are useful when long-term studies of field line behavior are necessary (e.g. in diffusion calculations). In this work we focus on a set of simple tokamak maps for which these advantages are specially pronounced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Let f: M -> M be a fiber-preserving map where S -> M -> B is a bundle and S is a closed surface. We study the abelianized obstruction, which is a cohomology class in dimension 2, to deform f to a fixed point free map by a fiber-preserving homotopy. The vanishing of this obstruction is only a necessary condition in order to have such deformation, but in some cases it is sufficient. We describe this obstruction and we prove that the vanishing of this class is equivalent to the existence of solution of a system of equations over a certain group ring with coefficients given by Fox derivatives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Let M -> B, N -> B be fibrations and f(1), f(2): M -> N be a pair of fibre-preserving maps. Using normal bordism techniques we define an invariant which is an obstruction to deforming the pair f(1), f(2) over B to a coincidence free pair of maps. In the special case where the two fibrations axe the same and one of the maps is the identity, a weak version of our omega-invariant turns out to equal Dold`s fixed point index of fibre-preserving maps. The concepts of Reidemeister classes and Nielsen coincidence classes over B are developed. As an illustration we compute e.g. the minimal number of coincidence components for all homotopy classes of maps between S(1)-bundles over S(1) as well as their Nielsen and Reidemeister numbers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a (3+1)-dimensional local field theory defined on the sphere S-2. The model possesses exact soliton solutions with nontrivial Hopf topological charges and an infinite number of local conserved currents. We show that the Poisson bracket algebra of the corresponding charges is isomorphic to that of the area-preserving diffeomorphisms of the sphere S-2. We also show that the conserved currents under consideration are the Noether currents associated to the invariance of the Lagrangian under that infinite group of diffeomorphisms. We indicate possible generalizations of the model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of dissipation on the simplified Fermi-Ulam accelerator model (SFUM) is investigated. The model is described in terms of a two-dimensional nonlinear mapping obtained from differential equations. It is shown that a dissipative SFUM possesses regions of phase space characterized by the property of area preservation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Let f: M -> M be a fiber-preserving map where S -> M -> B is a bundle and S is a closed surface. We study the abelianized obstruction, which is a cohomology class in dimension 2, to deform f to a fixed point free map by a fiber-preserving homotopy. The vanishing of this obstruction is only a necessary condition in order to have such deformation, but in some cases it is sufficient. We describe this obstruction and we prove that the vanishing of this class is equivalent to the existence of solution of a system of equations over a certain group ring with coefficients given by Fox derivatives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We find that within the formalism of coadjoint orbits of the infinite dimensional Lie group the Noether procedure leads, for a special class of transformations, to the constant of motion given by the fundamental group one-cocycle S. Use is made of the simplified formula giving the symplectic action in terms of S and the Maurer-Cartan one-form. The area preserving diffeomorphisms on the torus T2=S1⊗S1 constitute an algebra with central extension, given by the Floratos-Iliopoulos cocycle. We apply our general treatment based on the symplectic analysis of coadjoint orbits of Lie groups to write the symplectic action for this model and study its invariance. We find an interesting abelian symmetry structure of this non-linear problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fractal structures appear in many situations related to the dynamics of conservative as well as dissipative dynamical systems, being a manifestation of chaotic behaviour. In open area-preserving discrete dynamical systems we can find fractal structures in the form of fractal boundaries, associated to escape basins, and even possessing the more general property of Wada. Such systems appear in certain applications in plasma physics, like the magnetic field line behaviour in tokamaks with ergodic limiters. The main purpose of this paper is to show how such fractal structures have observable consequences in terms of the transport properties in the plasma edge of tokamaks, some of which have been experimentally verified. We emphasize the role of the fractal structures in the understanding of mesoscale phenomena in plasmas, such as electromagnetic turbulence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mapas simpléticos têm sido amplamente utilizados para modelar o transporte caótico em plasmas e fluidos. Neste trabalho, propomos três tipos de mapas simpléticos que descrevem o movimento de deriva elétrica em plasmas magnetizados. Efeitos de raio de Larmor finito são incluídos em cada um dos mapas. No limite do raio de Larmor tendendo a zero, o mapa com frequência monotônica se reduz ao mapa de Chirikov-Taylor, e, nos casos com frequência não-monotônica, os mapas se reduzem ao mapa padrão não-twist. Mostramos como o raio de Larmor finito pode levar à supressão de caos, modificar a topologia do espaço de fases e a robustez de barreiras de transporte. Um método baseado na contagem dos tempos de recorrência é proposto para analisar a influência do raio de Larmor sobre os parâmetros críticos que definem a quebra de barreiras de transporte. Também estudamos um modelo para um sistema de partículas onde a deriva elétrica é descrita pelo mapa de frequência monotônica, e o raio de Larmor é uma variável aleatória que assume valores específicos para cada partícula do sistema. A função densidade de probabilidade para o raio de Larmor é obtida a partir da distribuição de Maxwell-Boltzmann, que caracteriza plasmas na condição de equilíbrio térmico. Um importante parâmetro neste modelo é a variável aleatória gama, definida pelo valor da função de Bessel de ordem zero avaliada no raio de Larmor da partícula. Resultados analíticos e numéricos descrevendo as principais propriedades estatísticas do parâmetro gama são apresentados. Tais resultados são então aplicados no estudo de duas medidas de transporte: a taxa de escape e a taxa de aprisionamento por ilhas de período um.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We explore a method for constructing two-dimensional area-preserving, integrable maps associated with Hamiltonian systems, with a given set of fixed points and given invariant curves. The method is used to find an integrable Poincare map for the field lines in a large aspect ratio tokamak with a poloidal single-null divertor. The divertor field is a superposition of a magnetohydrodynamic equilibrium with an arbitrarily chosen safety factor profile, with a wire carrying an electric current to create an X-point. This integrable map is perturbed by an impulsive perturbation that describes non-axisymmetric magnetic resonances at the plasma edge. The non-integrable perturbed map is applied to study the structure of the open field lines in the scrape-off layer, reproducing the main transport features obtained by integrating numerically the magnetic field line equations, such as the connection lengths and magnetic footprints on the divertor plate.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We prove the existence of an associated family of G-structure preserving minimal immersions into semi-Riemannian manifolds endowed with a compatible infinitesimally homogeneous G-structure. We will study in more details minimal embeddings into product of space forms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this note we study coincidence of pairs of fiber-preserving maps f, g : E-1 -> E-2 where E-1, E-2 are S-n-bundles over a space B. We will show that for each homotopy class vertical bar f vertical bar of fiber-preserving maps over B, there is only one homotopy class vertical bar g vertical bar such that the pair (f, g), where vertical bar g vertical bar = vertical bar tau circle f vertical bar can be deformed to a coincidence free pair. Here tau : E-2 -> E-2 is a fiber-preserving map which is fixed point free. In the case where the base is S-1 we classify the bundles, the homotopy classes of maps over S-1 and the pairs which can be deformed to coincidence free. At the end we discuss the self-coincidence problem. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

prepared for the National Park Service by the Metropolitan Area Planning Council.