993 resultados para aerial image
Resumo:
Trees, shrubs and other vegetation are of continued importance to the environment and our daily life. They provide shade around our roads and houses, offer a habitat for birds and wildlife, and absorb air pollutants. However, vegetation touching power lines is a risk to public safety and the environment, and one of the main causes of power supply problems. Vegetation management, which includes tree trimming and vegetation control, is a significant cost component of the maintenance of electrical infrastructure. For example, Ergon Energy, the Australia’s largest geographic footprint energy distributor, currently spends over $80 million a year inspecting and managing vegetation that encroach on power line assets. Currently, most vegetation management programs for distribution systems are calendar-based ground patrol. However, calendar-based inspection by linesman is labour-intensive, time consuming and expensive. It also results in some zones being trimmed more frequently than needed and others not cut often enough. Moreover, it’s seldom practicable to measure all the plants around power line corridors by field methods. Remote sensing data captured from airborne sensors has great potential in assisting vegetation management in power line corridors. This thesis presented a comprehensive study on using spiking neural networks in a specific image analysis application: power line corridor monitoring. Theoretically, the thesis focuses on a biologically inspired spiking cortical model: pulse coupled neural network (PCNN). The original PCNN model was simplified in order to better analyze the pulse dynamics and control the performance. Some new and effective algorithms were developed based on the proposed spiking cortical model for object detection, image segmentation and invariant feature extraction. The developed algorithms were evaluated in a number of experiments using real image data collected from our flight trails. The experimental results demonstrated the effectiveness and advantages of spiking neural networks in image processing tasks. Operationally, the knowledge gained from this research project offers a good reference to our industry partner (i.e. Ergon Energy) and other energy utilities who wants to improve their vegetation management activities. The novel approaches described in this thesis showed the potential of using the cutting edge sensor technologies and intelligent computing techniques in improve power line corridor monitoring. The lessons learnt from this project are also expected to increase the confidence of energy companies to move from traditional vegetation management strategy to a more automated, accurate and cost-effective solution using aerial remote sensing techniques.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Palestinian region is changing rapidly, with both economic and cultural consequences. One way of approaching this very political process is thru the concept of landscape. By viewing the region as a multiprocessual, dynamic landscape the analysis allows for a holistic read where historical and contemporary projections, interpretations and notions of power are fused. This thesis draws on the scholarly fields of humanistic landscape research and aerial image interpretation as well as theories of orientalism and power. A case study of two regions of the West Bank is performed; interviews and observations provide localized knowledge that is then used in open-access image interpretation. By performing image interpretations this thesis explores the power embedded in mapping and the possible inclinations the development towards open-access geospatial analytic tools could have on the functions of power in the Palestinian landscape. By investigating the spatial configuration of the Palestinian landscape and tracing its roots this thesis finds four major themes that are particularly pivotal in the processual change of the Palestinian landscape: the Israeli/Palestinian time-space, the blurring of the conflict, the dynamics of the frontier region and the orientalist gaze.
Resumo:
Road features extraction from remote sensed imagery has been a long-term topic of great interest within the photogrammetry and remote sensing communities for over three decades. The majority of the early work only focused on linear feature detection approaches, with restrictive assumption on image resolution and road appearance. The widely available of high resolution digital aerial images makes it possible to extract sub-road features, e.g. road pavement markings. In this paper, we will focus on the automatic extraction of road lane markings, which are required by various lane-based vehicle applications, such as, autonomous vehicle navigation, and lane departure warning. The proposed approach consists of three phases: i) road centerline extraction from low resolution image, ii) road surface detection in the original image, and iii) pavement marking extraction on the generated road surface. The proposed method was tested on the aerial imagery dataset of the Bruce Highway, Queensland, and the results demonstrate the efficiency of our approach.
Resumo:
In this paper, we propose a novel method for measuring the coma aberrations of lithographic projection optics based on relative image displacements at multiple illumination settings. The measurement accuracy of coma can be improved because the phase-shifting gratings are more sensitive to the aberrations than the binary gratings used in the TAMIS technique, and the impact of distortion on displacements of aerial image can be eliminated when the relative image displacements are measured. The PROLITH simulation results show that, the measurement accuracy of coma increases by more than 25% under conventional illumination, and the measurement accuracy of primary coma increases by more than 20% under annular illumination, compared with the TAMIS technique. (c) 2007 Optical Society of America.
Resumo:
This paper presents a method for indirect orientation of aerial images using ground control lines extracted from airborne Laser system (ALS) data. This data integration strategy has shown good potential in the automation of photogrammetric tasks, including the indirect orientation of images. The most important characteristic of the proposed approach is that the exterior orientation parameters (EOP) of a single or multiple images can be automatically computed with a space resection procedure from data derived from different sensors. The suggested method works as follows. Firstly, the straight lines are automatically extracted in the digital aerial image (s) and in the intensity image derived from an ALS data-set (S). Then, correspondence between s and S is automatically determined. A line-based coplanarity model that establishes the relationship between straight lines in the object and in the image space is used to estimate the EOP with the iterated extended Kalman filtering (IEKF). Implementation and testing of the method have employed data from different sensors. Experiments were conducted to assess the proposed method and the results obtained showed that the estimation of the EOP is function of ALS positional accuracy.
Resumo:
This paper presents a novel robust visual tracking framework, based on discriminative method, for Unmanned Aerial Vehicles (UAVs) to track an arbitrary 2D/3D target at real-time frame rates, that is called the Adaptive Multi-Classifier Multi-Resolution (AMCMR) framework. In this framework, adaptive Multiple Classifiers (MC) are updated in the (k-1)th frame-based Multiple Resolutions (MR) structure with compressed positive and negative samples, and then applied them in the kth frame-based Multiple Resolutions (MR) structure to detect the current target. The sample importance has been integrated into this framework to improve the tracking stability and accuracy. The performance of this framework was evaluated with the Ground Truth (GT) in different types of public image databases and real flight-based aerial image datasets firstly, then the framework has been applied in the UAV to inspect the Offshore Floating Platform (OFP). The evaluation and application results show that this framework is more robust, efficient and accurate against the existing state-of-art trackers, overcoming the problems generated by the challenging situations such as obvious appearance change, variant illumination, partial/full target occlusion, blur motion, rapid pose variation and onboard mechanical vibration, among others. To our best knowledge, this is the first work to present this framework for solving the online learning and tracking freewill 2D/3D target problems, and applied it in the UAVs.
Resumo:
The commercialization of aerial image processing is highly dependent on the platforms such as UAVs (Unmanned Aerial Vehicles). However, the lack of an automated UAV forced landing site detection system has been identified as one of the main impediments to allow UAV flight over populated areas in civilian airspace. This article proposes a UAV forced landing site detection system that is based on machine learning approaches including the Gaussian Mixture Model and the Support Vector Machine. A range of learning parameters are analysed including the number of Guassian mixtures, support vector kernels including linear, radial basis function Kernel (RBF) and polynormial kernel (poly), and the order of RBF kernel and polynormial kernel. Moreover, a modified footprint operator is employed during feature extraction to better describe the geometric characteristics of the local area surrounding a pixel. The performance of the presented system is compared to a baseline UAV forced landing site detection system which uses edge features and an Artificial Neural Network (ANN) region type classifier. Experiments conducted on aerial image datasets captured over typical urban environments reveal improved landing site detection can be achieved with an SVM classifier with an RBF kernel using a combination of colour and texture features. Compared to the baseline system, the proposed system provides significant improvement in term of the chance to detect a safe landing area, and the performance is more stable than the baseline in the presence of changes to the UAV altitude.
Resumo:
This thesis examines the feasibility of a forest inventory method based on two-phase sampling in estimating forest attributes at the stand or substand levels for forest management purposes. The method is based on multi-source forest inventory combining auxiliary data consisting of remote sensing imagery or other geographic information and field measurements. Auxiliary data are utilized as first-phase data for covering all inventory units. Various methods were examined for improving the accuracy of the forest estimates. Pre-processing of auxiliary data in the form of correcting the spectral properties of aerial imagery was examined (I), as was the selection of aerial image features for estimating forest attributes (II). Various spatial units were compared for extracting image features in a remote sensing aided forest inventory utilizing very high resolution imagery (III). A number of data sources were combined and different weighting procedures were tested in estimating forest attributes (IV, V). Correction of the spectral properties of aerial images proved to be a straightforward and advantageous method for improving the correlation between the image features and the measured forest attributes. Testing different image features that can be extracted from aerial photographs (and other very high resolution images) showed that the images contain a wealth of relevant information that can be extracted only by utilizing the spatial organization of the image pixel values. Furthermore, careful selection of image features for the inventory task generally gives better results than inputting all extractable features to the estimation procedure. When the spatial units for extracting very high resolution image features were examined, an approach based on image segmentation generally showed advantages compared with a traditional sample plot-based approach. Combining several data sources resulted in more accurate estimates than any of the individual data sources alone. The best combined estimate can be derived by weighting the estimates produced by the individual data sources by the inverse values of their mean square errors. Despite the fact that the plot-level estimation accuracy in two-phase sampling inventory can be improved in many ways, the accuracy of forest estimates based mainly on single-view satellite and aerial imagery is a relatively poor basis for making stand-level management decisions.
Resumo:
Road transport and infrastructure has a fundamental meaning for the developing world. Poor quality and inadequate coverage of roads, lack of maintenance operations and outdated road maps continue to hinder economic and social development in the developing countries. This thesis focuses on studying the present state of road infrastructure and its mapping in the Taita Hills, south-east Kenya. The study is included as a part of the TAITA-project by the Department of Geography, University of Helsinki. The road infrastructure of the study area is studied by remote sensing and GIS based methodology. As the principal dataset, true colour airborne digital camera data from 2004, was used to generate an aerial image mosaic of the study area. Auxiliary data includes SPOT satellite imagery from 2003, field spectrometry data of road surfaces and relevant literature. Road infrastructure characteristics are interpreted from three test sites using pixel-based supervised classification, object-oriented supervised classifications and visual interpretation. Road infrastructure of the test sites is interpreted visually from a SPOT image. Road centrelines are then extracted from the object-oriented classification results with an automatic vectorisation process. The road infrastructure of the entire image mosaic is mapped by applying the most appropriate assessed data and techniques. The spectral characteristics and reflectance of various road surfaces are considered with the acquired field spectra and relevant literature. The results are compared with the experimented road mapping methods. This study concludes that classification and extraction of roads remains a difficult task, and that the accuracy of the results is inadequate regardless of the high spatial resolution of the image mosaic used in this thesis. Visual interpretation, out of all the experimented methods in this thesis is the most straightforward, accurate and valid technique for road mapping. Certain road surfaces have similar spectral characteristics and reflectance values with other land cover and land use. This has a great influence for digital analysis techniques in particular. Road mapping is made even more complicated by rich vegetation and tree canopy, clouds, shadows, low contrast between roads and surroundings and the width of narrow roads in relation to the spatial resolution of the imagery used. The results of this thesis may be applied to road infrastructure mapping in developing countries on a more general context, although with certain limits. In particular, unclassified rural roads require updated road mapping schemas to intensify road transport possibilities and to assist in the development of the developing world.
Resumo:
在高数值孔径、低工艺因子的光刻技术中,投影物镜彗差对光刻质量的影响变得越来越突出,因而需要一种快速、高精度的彗差原位测量技术。为此提出了一种新的基于双线空间像线宽不对称度的彗差测量技术,利用国际上公认的半导体行业光刻仿真软件PROLITH对该方法的测量精度进行了仿真分析。结果表明,与基于硅片曝光的彗差测量方法相比,基于空间像的彗差测量技术速度上的优势十分明显。其测量精度优于1.4nm,较国际前沿的多照明设置空间像测量技术(TAMIS)提高30%以上,测量速度提高1/3左右。在ASML公司的PAS5500型
Resumo:
This research presents a methodology for prediction of building shadows cast on urban roads existing on high-resolution aerial imagery. Shadow elements can be used in the modeling of contextual information, whose use has become more and more common in image analysis complex processes. The proposed methodology consists in three sequential steps. First, the building roof contours are manually extracted from an intensity image generated by the transformation of a digital elevation model (DEM) obtained from airborne laser scanning data. In similarly, the roadside contours are extracted, now from the radiometric information of the laser scanning data. Second, the roof contour polygons are projected onto the adjacent roads by using the parallel projection straight lines, whose directions are computed from the solar ephemeris, which depends on the aerial image acquisition time. Finally, parts of shadow polygons that are free from building perspective obstructions are determined, given rise to new shadow polygons. The results obtained in the experimental evaluation of the methodology showed that the method works properly, since it allowed the prediction of shadow in high-resolution imagery with high accuracy and reliability.