978 resultados para Zero-Dimensional Spaces
Resumo:
We are concerned with two-level optimization problems called strongweak Stackelberg problems, generalizing the class of Stackelberg problems in the strong and weak sense. In order to handle the fact that the considered two-level optimization problems may fail to have a solution under mild assumptions, we consider a regularization involving ε-approximate optimal solutions in the lower level problems. We prove the existence of optimal solutions for such regularized problems and present some approximation results when the parameter ǫ goes to zero. Finally, as an example, we consider an optimization problem associated to a best bound given in [2] for a system of nondifferentiable convex inequalities.
Resumo:
It is proved that for any $f$ is an element of $C^k(L,R)$, where k is a natural number and L is a closed linear subspace of a nuclear Frechet space $X$, the function $f$ can be extended to a function of class $C^{k-1}$ defined on the entire space $X$. It is also proved that for any $f$ is an element of $C^k(L, R)$, where $k$ is a natural number of infinity and L is a closed linear subspace of a dual $X$ of a nuclear Frechet space, the function $f$ can be extended to a function of class $C^k$ defined on the entire space $X$. In addition, it is proved that under these conditions, the existence of a linear extension operator is equivalent to the complementability of the subspace.
Resumo:
According to Grivaux, the group GL(X) of invertible linear operators on a separable infinite dimensional Banach space X acts transitively on the set s (X) of countable dense linearly independent subsets of X. As a consequence, each A? s (X) is an orbit of a hypercyclic operator on X. Furthermore, every countably dimensional normed space supports a hypercyclic operator. Recently Albanese extended this result to Fréchet spaces supporting a continuous norm. We show that for a separable infinite dimensional Fréchet space X, GL(X) acts transitively on s (X) if and only if X possesses a continuous norm. We also prove that every countably dimensional metrizable locally convex space supports a hypercyclic operator.
Resumo:
The synthesis and characterization of the first anions containing two gallium-sulfide supertetrahedra linked via an organic moiety are described.
Resumo:
Nonlinear data assimilation is high on the agenda in all fields of the geosciences as with ever increasing model resolution and inclusion of more physical (biological etc.) processes, and more complex observation operators the data-assimilation problem becomes more and more nonlinear. The suitability of particle filters to solve the nonlinear data assimilation problem in high-dimensional geophysical problems will be discussed. Several existing and new schemes will be presented and it is shown that at least one of them, the Equivalent-Weights Particle Filter, does indeed beat the curse of dimensionality and provides a way forward to solve the problem of nonlinear data assimilation in high-dimensional systems.
Resumo:
By means of a mod(N)-invariant operator basis, s-parametrized phase-space functions associated with bounded operators in a finite-dimensional Hilbert space are introduced in the context of the extended Cahill-Glauber formalism, and their properties are discussed in details. The discrete Glauber-Sudarshan, Wigner, and Husimi functions emerge from this formalism as specific cases of s-parametrized phase-space functions where, in particular, a hierarchical process among them is promptly established. In addition, a phase-space description of quantum tomography and quantum teleportation is presented and new results are obtained.
Resumo:
We show how discrete squeezed states in an N-2-dimensional phase space can be properly constructed out of the finite-dimensional context. Such discrete extensions are then applied to the framework of quantum tomography and quantum information theory with the aim of establishing an initial study on the interference effects between discrete variables in a finite phase space. Moreover, the interpretation of the squeezing effects is seen to be direct in the present approach, and has some potential applications in different branches of physics.
Resumo:
The Cahill-Glauber approach for quantum mechanics on phase space is extended to the finite-dimensional case through the use of discrete coherent states. All properties and features of the continuous formalism are appropriately generalized. The continuum results are promptly recovered as a limiting case. The Jacobi theta functions are shown to have a prominent role in the context.
Resumo:
Operator bases are discussed in connection with the construction of phase space representatives of operators in finite-dimensional spaces, and their properties are presented. It is also shown how these operator bases allow for the construction of a finite harmonic oscillator-like coherent state. Creation and annihilation operators for the Fock finite-dimensional space are discussed and their expressions in terms of the operator bases are explicitly written. The relevant finite-dimensional probability distributions are obtained and their limiting behavior for an infinite-dimensional space are calculated which agree with the well known results. (C) 1996 Academic Press, Inc.
Resumo:
Group theoretical-based techniques and fundamental results from number theory are used in order to allow for the construction of exact projectors in finite-dimensional spaces. These operators are shown to make use only of discrete variables, which play the role of discrete generator coordinates, and their application in the number symmetry restoration is carried out in a nuclear BCS wave function which explicitly violates that symmetry. © 1999 Published by Elsevier Science B.V. All rights reserved.
Resumo:
The present thesis is a contribution to the multi-variable theory of Bergman and Hardy Toeplitz operators on spaces of holomorphic functions over finite and infinite dimensional domains. In particular, we focus on certain spectral invariant Frechet operator algebras F closely related to the local symbol behavior of Toeplitz operators in F. We summarize results due to B. Gramsch et.al. on the construction of Psi_0- and Psi^*-algebras in operator algebras and corresponding scales of generalized Sobolev spaces using commutator methods, generalized Laplacians and strongly continuous group actions. In the case of the Segal-Bargmann space H^2(C^n,m) of Gaussian square integrable entire functions on C^n we determine a class of vector-fields Y(C^n) supported in complex cones K. Further, we require that for any finite subset V of Y(C^n) the Toeplitz projection P is a smooth element in the Psi_0-algebra constructed by commutator methods with respect to V. As a result we obtain Psi_0- and Psi^*-operator algebras F localized in cones K. It is an immediate consequence that F contains all Toeplitz operators T_f with a symbol f of certain regularity in an open neighborhood of K. There is a natural unitary group action on H^2(C^n,m) which is induced by weighted shifts and unitary groups on C^n. We examine the corresponding Psi^*-algebra A of smooth elements in Toeplitz-C^*-algebras. Among other results sufficient conditions on the symbol f for T_f to belong to A are given in terms of estimates on its Berezin-transform. Local aspects of the Szegö projection P_s on the Heisenbeg group and the corresponding Toeplitz operators T_f with symbol f are studied. In this connection we apply a result due to Nagel and Stein which states that for any strictly pseudo-convex domain U the projection P_s is a pseudodifferential operator of exotic type (1/2, 1/2). The second part of this thesis is devoted to the infinite dimensional theory of Bergman and Hardy spaces and the corresponding Toeplitz operators. We give a new proof of a result observed by Boland and Waelbroeck. Namely, that the space of all holomorphic functions H(U) on an open subset U of a DFN-space (dual Frechet nuclear space) is a FN-space (Frechet nuclear space) equipped with the compact open topology. Using the nuclearity of H(U) we obtain Cauchy-Weil-type integral formulas for closed subalgebras A in H_b(U), the space of all bounded holomorphic functions on U, where A separates points. Further, we prove the existence of Hardy spaces of holomorphic functions on U corresponding to the abstract Shilov boundary S_A of A and with respect to a suitable boundary measure on S_A. Finally, for a domain U in a DFN-space or a polish spaces we consider the symmetrizations m_s of measures m on U by suitable representations of a group G in the group of homeomorphisms on U. In particular,in the case where m leads to Bergman spaces of holomorphic functions on U, the group G is compact and the representation is continuous we show that m_s defines a Bergman space of holomorphic functions on U as well. This leads to unitary group representations of G on L^p- and Bergman spaces inducing operator algebras of smooth elements related to the symmetries of U.
Resumo:
The transmission of weak signals through the visual system is limited by internal noise. Its level can be estimated by adding external noise, which increases the variance within the detecting mechanism, causing masking. But experiments with white noise fail to meet three predictions: (a) noise has too small an influence on the slope of the psychometric function, (b) masking occurs even when the noise sample is identical in each two-alternative forced-choice (2AFC) interval, and (c) double-pass consistency is too low. We show that much of the energy of 2D white noise masks extends well beyond the pass-band of plausible detecting mechanisms and that this suppresses signal activity. These problems are avoided by restricting the external noise energy to the target mechanisms by introducing a pedestal with a mean contrast of 0% and independent contrast jitter in each 2AFC interval (termed zero-dimensional [0D] noise). We compared the jitter condition to masking from 2D white noise in double-pass masking and (novel) contrast matching experiments. Zero-dimensional noise produced the strongest masking, greatest double-pass consistency, and no suppression of perceived contrast, consistent with a noisy ideal observer. Deviations from this behavior for 2D white noise were explained by cross-channel suppression with no need to appeal to induced internal noise or uncertainty. We conclude that (a) results from previous experiments using white pixel noise should be re-evaluated and (b) 0D noise provides a cleaner method for investigating internal variability than pixel noise. Ironically then, the best external noise stimulus does not look noisy.